The State of the Industry

Typically, the term fiber reinforced polymer (FRP) composite is used to describe product applications in the aerospace, military or recreational industries, (e.g. skis, boats, race cars, or golf clubs). However, over the last twenty-five years, the civil infrastructure industry has been conducting continual testing and multi-million dollar project applications of FRP composite materials. Even though the other abovementioned industries have remained the primary consumers, the use of FRP composites in civil infrastructure is fast becoming a major contender.

Read More →

How will the practice of structural engineering and the industry as a whole evolve from its current state? What are the opportunities and challenges in our continually changing industry? To answer these questions and more, the ASCE Structural Engineering Institute (SEI) surveyed structural engineering leaders nationwide in January 2013. Questions ranged from basic demographics to operational issues, licensure, and the ranked importance of external influences on the professional in the coming decade.

Read More →

Part 5: The Follow-up

This article is a continuation of a previous four-part series entitled The Triage, Life Support and Subsequent Euthanasia of an Existing Precast Parking Garage. Part 4 appeared in the April 2014 issue of STRUCTURE magazine. Pennoni conducted a follow-up structural condition assessment a little more than one year after the original investigation, which was completed in December 2012.

Read More →

When the author first started his structural engineering career in the 1980s, common cold-formed steel applications in buildings were primarily limited to steel roof and floor deck, interior non-load bearing partition walls, and curtain wall framing; in other words, secondary members. As a structural engineer designing buildings, one could rely on manufacturers’ literature, such as steel deck catalogs, or delegate the design of these cold-formed steel applications to contractors or specialty structural engineers through performance specifications. Significant experience in cold-formed steel framing design was not required.

Read More →

In 1811, the only bridge crossing the Schuylkill River near Philadelphia was Timothy Palmer’s Permanent Bridge that opened in 1805 (STRUCTURE®, October 2013). Ferries continued to serve the community at the Upper Ferry (Sheridan’s) and the Lower Ferry (Gray’s). Both of these ferries at times also had floating bridges adjacent to them. As early as January 30, 1811, an Act was submitted to the legislature authorizing “A company for erecting a permanent bridge over the River Schuylkill at or near where the floating bridge of Abraham Sheridan is at present situate, known by the name of the upper ferry in the County of Philadelphia.”

Read More →

As early as 1970, the structural engineering and building safety community recognized that a large number of two-, three- and four-story woodframe buildings, designed with the first floor used either for parking or commercial space, were built with readily identifiable structural deficiencies, referred to as a “soft story”. Often these buildings also have a strength deficiency when compared to the stories above, in which case they are also classified as “weak”.

Read More →

From Conceptual Design to Implementation

Over the past 15 years, and particularly following the events of September 11th 2001, there has been increasing demand to incorporate blast resistance in important government and commercial facilities. Exterior walls of such buildings are designed to withstand blast impulse loading without a failure that would endanger building occupants, either through penetration of harmful debris or pressure waves. Operators of petrochemical facilities are also concerned about similar explosive threats due to large accidental explosions.

Read More →

Part 2: Test Protocols and Case Studies

As discussed in Load Testing of Concrete Structures – Part 1 (STRUCTURE® magazine, April 2014), load testing can be used to determine the ability of a structure to carry additional loads, to establish the safety of structures, to validate strengthening, to gain knowledge on the behavior of a structure, and to supplement, validate or refine analytical work models. Part 1 discussed different aspects of in-situ load testing including the load test program, methods of load application and instrumentation. Part 2 describes the load test protocols and presents case studies to illustrate the use of in-situ load testing in the evaluation of existing concrete structures.

Read More →

The British have tasked two organizations – CROSS (Confidential Reporting on Structural Safety) and SCOSS (The Standing Committee on Structural Safety) – to work jointly to collect information on structural failures, to maintain a database and to provide reports interpreting the data. When reading CROSS’ alerts and reports in its newsletters, I cannot help but reflect on the way we communicate risk within the United States, and question if our current practice is capable of providing adequate warnings about some potential structural risks.

Read More →
STRUCTURE magazine