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By James Lefter, P.E.

Bayes’ Rule for the Practicing 
Structural Engineer

Practicing structural engineers must make 
decisions on safety, cost and utility even 
when “hard information” is not avail-
able. “Bayes’ Rule” is a mathematical 

tool for using experience and judgment to cal-
culate the probabilities that could guide these 
decisions. The engineer assembles data such as 
test results, develops a hypothesis relating the 
data to underlying causes, and uses Bayes’ Rule 
to calculate the probability that the hypothesis 
is correct.
Bayes’ Rule is from a paper by Thomas Bayes 

published posthumously and later affirmed and 
augmented by Pierre-Simon Laplace. Recent 
applications of Bayes’ Rule, coupled with com-
puter technology, have revolutionized statistical, 
scientific, and medical analyses (Iverson 1984, 
Mcgrayne 2011). This article shows how to use 
Bayes’ Rule with a spreadsheet program, such 
as Microsoft® Excel, to evaluate quality control 
sampling, test reports, reliability of bridge gird-

ers under random 
loading, office man-
agement decisions, 
and the Monty 
Hall Problem.
Using Bayes’ 

Rule requires an 
understanding of 

probability and statistics, and advanced appli-
cations can be challenging. Most textbooks on 
finite mathematics (Goldstein et al 2007) include 
an introduction to probability and Bayes’ Rule. 
There are also many Internet sources (Albert 
2006). This article is at the introductory level. 
A derivation of Bayes’ Rule is included as an 
Appendix to the online version of this article at 
www.STRUCTUREmag.org.
Bayes’ Rule offers advantages over conventional 

statistics. The engineer may: 1) use subjective 
judgment or experience, based on the availabil-
ity of test data; 2) update an analysis when new 
information becomes available; and 3) automati-
cally calculate the probabilities of false positives 
(false alarms) and false negatives (missed defects 
or other items). False positives may increase cost, 
while false negatives may be disastrous. A high 
probability of either alerts the engineer that the 
test process may be wanting.

Probability and Statistics
“Probability” is a “fair bet” in a world of uncer-
tainty. From statistics, P(A) = N(A) / N ≤ 1, where 
N is the total number of outcomes of an event, 
N(A) is the number of outcomes leading to A, 
and P(A) is the fraction (probability) of the total 
number of events in which A occurs. Given S as 
a subset of N, and (!) as the factorial symbol, the 
number of ways in which S items can be chosen 
from N possibilities is N!/[S! (N-S)!].

Low-strength concrete is a frequently encountered 
problem in construction. ACI 318 Section 5.6.2.1 
(ACI 318- 08) requires at least one strength test 
for every 150 cubic yards (cy) of concrete placed 
each day, but not less than five strength tests 
for every class of concrete. If delivered in 5-cy 
capacity trucks, at least 30 trucks will be used to 
transport the concrete. If 10% of the concrete 
does not meet the ACI requirements, calculate 
the probability that the low-strength concrete 
truckloads would not be detected.
The number of ways of drawing five samples 

from 30 truckloads = 30!/(5! 25!) = 142,506. 
Assuming three truckloads of low-strength con-
crete (10% of 30), the number of ways of drawing 
five samples without low strength concrete = 
27!/(5! 22!) = 80,730. P(A) = the probability 
of not detecting the low strength concrete = 
80,730/142,506 = 0.567.

Bayes’ Rule Analyses
An “event” is the cause and its probability is called 
a “prior.” The engineer observes data T and uses 
Bayes’ Rule to calculate the probability of its 
relationship to a perceived cause. The probabili-
ties of the observed effects, the data, are called 
“likelihoods” and may be based on experience, 
tests results, standard handbooks, or judgment. 
A Bayes’ Rule analysis follows these general steps:

1)	� Propose a hypothesis P(E|T) relating 
priors and likelihoods.

2)	� List available information about the 
priors, as probabilities.

3)	� List the related likelihoods, as probabilities.
4)	� Multiply the priors by the likelihoods, 

using Bayes’ Rule to calculate the 
“posterior probabilities.”

The posterior probabilities represent the prob-
ability that the hypothesis P(E|T) is true. The 
process is shown in the example problems. If the 
engineer has no relevant prior knowledge, a value 
of P(E) = 0.5 is recommended.

Example 1 – Quality Control Sampling

There are advanced applications of Bayes’ Rule 
in which the population data are the priors and 
the binomial distributions are the likelihoods. For 
this example, the HYPEGEOMDIST function 
in Microsoft Excel is more direct. In order, the 

If a man will begin with certainties, 
he shall end in doubts; but if he will 
be content to begin with doubts he 
will end in certainties.

– Francis Bacon
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inputs are the number of “successes” in the 
sample, the size of the sample, the number 
of successes in the population, and the size 
of the population. In this case, a “success” is 
actually not detecting low-strength concrete. 
HYPEGEOMDIST (0, 5, 3, 30) returns the 
correct value of 0.567.

Example 2 – Weld Inspection Report

The engineer’s experience indicated that 
10% of welds inspected by the specified 
test method would have defects. Laboratory 
reports from a project indicated that 20% of 
the 50 welds inspected to date had defects 
(Jordaan 2005). The engineer used Bayes’ 
Rule to analyze the situation. E was that a 
flaw was present in a weld and T was that 
the flaw would be detected by the speci-
fied test process. The hypotheses P(E|T) was 
that genuine weld flaws would be detected. 
Based on the engineer’s prior experience, 
P(E) = 0.1. The laboratory report indicated 
that P(T|E) = 0.8 and P(T1|E) = 0.2. From 
the Probability Sum Rule, P(E1) = 1- P(E) 
= 0.9, P(T|E1) = 0.2 and P(T1|E1) = 0.8. 
Calculating the posterior probabilities by 
Bayes’ Rule equations is cumbersome. If the 
factors are set up using a BAYES BOX (see 
Appendix), the calculation is more direct and 
convenient. The resulting posterior prob-
abilities are identical to those calculated by 
using the Bayes’ Rule equations.
To interpret the results: The engineer 

expected 10% of the welds to have flaws; 
i.e., of the 50 welds inspected to date, five 
would have flaws (positive test results). The 
laboratory indicated that 20% of the welds 
(10 of 50) had flaws. The laboratory tests 
did not calculate the probabilities of false 
positives and false negatives. The Bayes’ 
Rule analysis calculated P(E|T) = 0.31, the 
probability that welds that tested positive 
would actually have defects. Of the 50 welds 
examined, four welds (0.31 x 0.26 x 50 = 
4.03) would have “true” defects. P(E1|T) = 
0.69, so about nine “defective” welds (0.69 
x 0.26 x 50 = 8.97) would be false positives; 

that is, the test would have detected nine 
non-existing flaws. This was a statistical 
Type 1 error. Since P(E|T1) = 0.03, about 
one weld (0.03 x 0.74 x 50 = 1.11) had a 
flaw that the tests missed. This was a statisti-
cal Type 2 error. Finally, P(E1|T1) = 0.97, 
therefore the absence of flaws was correctly 
detected for about 36 of the welds (0.97 x 
0.74 x 50 = 35.89).
The engineer would note that the combina-

tion of the probabilities of false positives and 
false negatives are indicators of the strictness 
of the testing system. Critical projects such as 
nuclear power plants need tight controls even 
though they are costly in time and budget. 
However, false negatives, flaws that were 
not detected in critical facilities, could be 
very hazardous.
If more test data becomes available, the pos-

terior probabilities are used as priors in an 
updating analysis.

Example 3 – Bridge Girder Reliability 
(Monte Carlo Method)

The Monte Carlo method is used to evaluate 
the reliability, R, of a bridge girder subjected 
to random simulated loads. The random load-
ing is applied iteratively until R converges. 
The number of iterations may range from 
hundreds to thousands. Microsoft Excel can 
generate over 30,000 iterations.
The bridge girder is a W36x135 spanning 

60 feet, subject to a uniform dead load of 
0.5 kips/foot and a concentrated live load 

at mid-span with a mean value of 40 kips. 
The engineer calculated the girder flexural 
stress using 200 simulated load tests assum-
ing a normal distribution with a standard 
deviation equal to the mean divided by the 
square root of the number of samples, but 
not less than 1/5 of the mean (8 kips in this 
case). If this stress was less than or equal to 
the allowable value of 24 ksi, then the girder 
was considered acceptable. The reliability 
factor R of the girders was calculated as the 
ratio of the number of acceptable girders to 
the total number of girders (200). (Elishakoff 
1999 pp. 440-41). (Spreadsheet details are 
in the Appendix.)
The results indicated a reliability factor R 

of 0.64, which does not significantly vary 
upon increasing the number of iterations. The 
engineer was confident about the adequacy of 
the girders and assumed P(E) = 0.95 (priors) 
accordingly, then used the R values as likeli-
hoods in the Bayes Box analysis. P(E|T) is the 
probability that a girder meeting or exceeding 
R would be accepted.
The reliability of the bridge girders under 

random loading increased from 0.64 to 0.97 
for girders meeting both E and T require-
ments (about 122 of 200 girders). However, 
the engineer noted from P(E|T1) = 0.91 that 
about 68 of the girders were “false negatives,” 
indicating that the engineer may be overcon-
fident about the test process. As always, the 
engineer ultimately decides on the accept-
ability of R.

Table for Example 2: Weld Inspection.

Hypothesis Event Priors Likelihoods Product
Posterior 

Probability
Number of 

Welds
P(E|T) E 0.1 0.8 0.08 0.31 4
P(E1|T) E1 0.9 0.2 0.18 0.69 9
P(T)= 0.26
P(E|T1) E 0.1 0.2 0.02 0.03 1
P(E1|T1) E1 0.9 0.8 0.72 0.97 36
P(T1)= 0.74
Welds 50 50

continued on next page

Hypothesis Events Priors Likelihoods Product
Posterior 

Probability
Number of 

Girders
P(E|T) E 0.95 0.64 0.608 0.97 122
P(E1|T) E1 0.05 0.36 0.018 0.03 4
P(T)= 0.626
P(E|T1) E 0.95 0.36 0.342 0.91 68
P(E1|T1) E1 0.05 0.64 0.032 0.09 6
P(T1)= 0.374
Total Girders 200 200

Table for Example 3: Bridge girder reliability.

Bayes Box
P(E) = 0.95
P(E1) = 0.05
P(T|E) = 0.64
P(T|E1) = 0.36
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Example 4 – Office Management  
4A. �Bridge Collapse  

Preliminary Assessment

A bridge was being upgraded when it col-
lapsed suddenly. A review of collapses of 
bridges of similar construction and vintage 
indicated the following probabilities of vari-
ous causes: 0.2 by overload, 0.2 by design 
deficiencies, 0.3 by construction deficien-
cies, 0.1 by inadequate maintenance, and 
0.2 by other causes. However, the engineer 
noted that at the time of collapse, one side 
of the bridge was open to normal traffic 
while the other was loaded with construc-
tion equipment. Accordingly, the engineer 
estimated a probability of 0.4 that the failure 
was due to an overload from the combina-
tion of construction loads and live loads. 
The other probabilities of failure were then 
assumed as 0.2 by design deficiencies, 0.2 
by construction deficiencies, 0.1 by inad-
equate maintenance, and 0.1 by other causes. 
Calculate the probability P(E|T) for each 
cause of failure.
The probability of failure due to Overload 

increased from 0.2 to 0.38.

4B. Project Assignment

The supervising engineer considers both 
on-time performance and accuracy when 
assigning a project. Engineer A completed 
70% of assigned projects on schedule, but 
there were major design changes required 
during construction on 40% of them. 
Engineer B completed 40% of projects on 
schedule, and only 10% of them required 
major design changes during construction. 
Assuming similar projects in scope and sched-
ule duration, calculate the probability that 
each engineer would complete a project on 
schedule without major design changes.
Engineer A has a higher probability of com-

pleting a project on schedule and without 
major design changes.

4C. Monty Hall Problem

Suppose you are a contestant on a TV game 
show and are given the choice of three doors. 
Behind one of the doors is a prize, and behind 
the other two doors are goats. You pick a 
door. The host, who knows what is behind 
each door, then opens one of the other doors, 
showing a goat. You are allowed to change 
your door choice. Assuming you want the 
prize, do you change?
Using Bayes’ Rule, P(E) is the probability 

that the prize is behind your door = 1/3. P(E1) 
is the probability that the prize is behind 
one of the other two doors = 2/3. When the 
host opens a door that reveals a goat, the 
likelihood probability P(T|E) is the same 

that the prize is behind your door vs. the 
remaining door = 1/2.
Although it may seem counterintuitive, 

selecting the other remaining door, rather 
than the one you chose initially, actually 
improves your probability of winning to 
0.67. This example illustrates the broad 
applicability of Bayes’ Rule and the impor-
tance of using both priors and likelihoods 
for a complete analysis.

Advanced Applications
Many advanced applications of Bayes’ 
Rule were supported by National Science 
Foundation funding and are available. They 
include structural responses to random exci-
tations, decision analysis in building codes, 
uncertainty in model analysis, reliability of 

damaged structures, and random loading, 
from wind and seismic forces or terrorist 
attacks. Many additional articles and com-
puter programs are on the Internet.

Conclusions
An engineer intuitively makes inferences 
based on available prior knowledge and 
related experimental data, while reserving 
the right to revise the inference based on 
new information. Bayes’s Rule is a vehicle 
for organizing this approach, a mathe-
matical process for using experience and 
judgment to calculate the probabilities that 
could help guide engineering decisions. 
It tests both the “priors” and the “likeli-
hoods”, while calculating the probabilities 
of an “E” and “T” hypothesis. In practice, 

Cause Prior Likelihood Product
Posterior 

Probability

Design 0.2 0.2 0.04 0.19

Construction 0.3 0.2 0.06 0.29

Overload 0.2 0.4 0.08 0.38

Maintenance 0.1 0.1 0.01 0.05

Other 0.2 0.1 0.02 0.10

Sum 1 1 0.21 1

Engineer
Priors 

On-Time
Likelihood 
No-Change Product

Posterior 
Probability

A 0.7 0.6 0.42 0.54

B 0.4 0.9 0.36 0.46

Sum 0.78 1

Prior Likelihood Product
Posterior 

Probability

E 0.333 0.5 0.17 0.33

E1 0.667 0.5 0.33 0.67

Sum 0.5 1

Hypothesis Event Priors Likelihoods
P(E|T) E P(E) P(T|E)
P(E1|T) E1 P(E1) P(T|E1)
P(T) Sum
P(E|T1) E P(E) P(T1|E)
P(E1|T1) E1 P(E1) P(T1|E1)
P(T1) Sum

Example 4A: Bridge collapse.

Example 4B: Project assignments.

Example 4C: Monty Hall problem.

Bayes Box for Direct Calculations.
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the engineer would evaluate several sources of information, such as the qualifications 
of the testing laboratory, test records, etc., before making a critical decision.
The premise underlying Bayes’ Rule, as well as all education, is learning from experience 

and judgment. Bayes’ Rule reminds us that attempts to predict the future responsibly 
are possible only in terms of probability and that the highly improbable may occur. 
As always, the engineer is the one who ultimately decides.▪
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Appendix
Bayes’ Rule

E = the event E occurs.
P(E) = the probability that event E occurs.
E1 = the event E does not occur.
P(E1) = the probability that event E does 

not occur.
E and E1 are “known” based on experience 

or estimated using judgment, and P(E) 
and P(E1) are called “priors.”

P(E) + P(E1) = 1.
T = a positive test result.
P(T) =the probability that T occurs.
T1 = a negative test result.
P(T1) = the probability that T1 occurs.
P(T) and P(T1) are based on actual obser-

vations and are called “likelihoods”.
P(T) + P(T1) = 1.
Note that E and T are independent events.
P(T|E) = conditional probability that T 

occurs given that E also occurs.
P(T|E1) = conditional probability that T 

occurs even though E does not occur 
(false positive).

P(T1|E) = conditional probability that 
T1 occurs even though E has occurred 
(false negative).

P(T1|E1) = conditional probability that T1 
occurs given that E does not occur.

By the Probability Sum Rule, P(T|E) + 
P(T1|E) = 1 and P(T|E1) + P(T1|E1) 
= 1.

By probability rules, P(E|T) x P(T ) = 
P(T|E) x P(E).

Rearranging, P(E|T) = P(T|E) x P (E) / 
P(T) , which is Bayes’ Rule, given P(T) 
> 0.

P(T) is a normalizing factor = P(E) x 
P(T|E) + P(E1) x P(T|E1).

The usual form of Bayes’ Rule is: P(E|T) = 
P(T|E) x P(E) / [P(T|E) x P(E) + P(E1) 
x P (T|E1)].

Other forms of Bayes’ Rule are:

P(E1|T) = P(T|E1) x P(E1) / [(P(T|E1) x 
P(E1) + P(E) x P(T|E)].

P(E|T1) = P(T1|E) x P(E) / [(P(T1|E) x 
P(E) + P(E) x P(T1|E1)].

P(E1|T1) = P(T1|E1) x P(E) / [(P(T1|E1) x 
P(E) + P(E) x P(T1|E)].

By the Probability Sum Rule, P(E|T) + 
P(E1|T) = 1 and P(E|T1) + P(E1|T1) 
= 1.

Example 3: Bridge Girder Reliability.

Monte Carlo Method
Mean = 40k
stdev = 8
Span = 60ft
Px = NORMINV(RAND(), MEAN, STDEV)

Px Mx FS Acceptable

1 44.6082 10729.5 24.440725 0 0

2 44.1566 10648.2 24.255566 0 0

3 38.9892 9718.06 22.136811 1 0.33333

4 38.2186 9579.35 21.820838 1 0.5

5 50.3165 11757 26.781249 0 0.4

6 51.0352 11886.3 27.075921 0 0.33333

7 35.0123 9002.22 20.506192 1 0.42857

8 29.8181 8067.27 18.376459 1 0.5

195 35.7993 9143.87 20.828851 1 0.64103

196 49.0708 11532.7 26.270485 0 0.63776

197 45.738 10932.8 24.903981 0 0.63452

198 39.2907 9772.33 22.260429 1 0.63636

199 36.882 9338.77 21.272821 1 0.63819

200 35.1995 9035.9 20.582919 1 0.64

128

Girder Reliability Factor = 0.64

Girder W36x135
S = 439 in^3
DL = 0.5 k/ft
MEAN = 40k
MDL = 2700 k-in.
MLL = 7200 k-in.
SUM = 9900 k-in.
FS allow = 24 ksi
FS = Flexural Stress ksi
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