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If you are like me, you emerged from your 
collegiate experience with a broad array of 
fundamental tools in structural design that, 
hopefully, armed you adequately for your 

chosen career. I recall finishing my bachelor’s 
degree and having a skill set that, in retrospect, 
might be described as “barely sufficient”. With 
this statement, I do not mean to diminish the 
quality of my education, nor the dedication or 
expertise of excellent professors. I simply mean 
that a four-year college experience laced with a 
generous dose of liberal arts education require-
ments barely compares to the experience and 
learning that take place in actual practice. Among 
the skills that I gained as an undergraduate were 
the basics of reinforced concrete design, includ-
ing beams and columns. I eventually came to 
understand that the concepts that pertain to 
these elements also permeate nearly every aspect 
of reinforced concrete design, from footings to 
shear walls. I have also come to understand that, 

like many other materi-
als, there are simplified 
approaches for rein-
forced concrete design. 
Although they should 
not become the final 
basis of design, they 

can serve as effective tools to corroborate more 
detailed calculations or to estimate geometries, 
sizes and proportions as part of a preliminary or 
schematic design. This article seeks to address and 
elaborate upon a few of the simplified methods 
commonly used for reinforced concrete.
First, consider the familiar As~Mu/4d approach 

that is commonly used in the design of rein-
forced concrete beams. Quite simply, the 
required area of steel is approximately equal to 
the factored moment (in kip-feet) divided by 4d, 
where d is the effective depth from the extreme 
compression fiber to the centroid of the tensile 
reinforcement (in inches). When sizing a beam, 
it is advisable to start with the ACI provisions 
for span-to-depth ratios. You may recall that for 
a simply supported beam having a total height 
(h) not less than span/16, deflection calcula-
tions may be omitted. This is good precedent 
for beginning a beam design. As for the width, 
good proportioning of sizes will often show that 
widths between one-half and two-thirds of the 
depth are often appropriate.
Regarding the reinforcement, contemporary 

texts offer elaborate approaches for determining 
how much steel to use, and computers can make 
the trial-and-error process relatively quick and 
painless. Examination of the basic equations,

a = Asfy/0.85f 'cb
and
Mn = Asfy(d-a/2),

shows that a second-order polynomial can be 
developed for which the required area of steel (As) 
can be solved by substituting Mu for Mn. The 
problem is that this is tedious and yields an exact 
result that is not necessarily pragmatic considering 
the discrete bar sizes available.
This is why the As~Mu/4d method is so useful. 

This equation is not typically found in modern 
concrete design textbooks, yet it is perhaps one of 
the most prolific approximations within structural 
engineering. Does it have a rational basis? One 
would assume that it must, because it always 
seems to work, provided that the beam dimen-
sions are reasonable. If we make the simple yet 
rational approximation that the internal lever 
arm between tensile and compressive resultants 
in a concrete beam is equal to 90% of the effec-
tive depth (d ), then the (d-a/2) component of 
the “exact” equation above simply becomes 0.9d 
(Figure 1). Assuming fy = 60 ksi since this is almost 
always the case, we now have a simple equation 
for approximate nominal flexural capacity:

Mn = As(60 ksi)(0.9d )

Now, substitute Mu for Mn and convert from 
units of kip-feet to kip-inches by multiplying Mu 
by 12. Next, assign  = 0.9, which is usually the 
case unless reinforcing ratios become extremely 
high or the beam is unusually shallow, and we 
get the result:

As 									          =

Hence the long-held approximation does have 
a rational basis.
What about column axial/flexural design? A 

knee-jerk reaction for many might be to open 
up a spreadsheet or some other automated tool. 
Before doing this, we might ask the following: 
What are the two most descriptive points on an 
interaction diagram? I believe that they are the 
points intersecting the x and y axes; in other 
words, the moment capacity when there is no 
axial load, and the axial capacity when there is 
no moment. Knowing what interaction curves 
will likely develop with respect to these points 
can be instructive.

A similar article was published in 
the SEAU Newsletter (Fall 2012). 

It is reprinted with permission.

Mu(12)
0.9(60)(0.9d )

Mu

4.05d

Figure 1.
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So, how can we estimate these points without 
a bunch of tedious calculations? Start by look-
ing at the moment capacity under zero axial 
load (i.e., the column behaves like a beam). 
If reinforcing ratios are relatively low (1% 
to 3%), then it stands to reason that bars in 
compression or near the neutral axis probably 
do not contribute much to flexural capacity. 
Consider an 18-inch square column with f 'c 
= 4,000 psi and eight #7 vertical bars (about 
1.5% steel) in a standard 3x3 pattern and 2.5 
inches of cover to bar center. At zero axial load, 
the compression zone becomes relatively small, 
such that the neutral axis lies relatively close to 
the extreme compression fiber. Drawing upon 
this logic, we can conclude that the centroid 
of tensile forces for the reinforcement at the 
opposite side of the column is typically about 
two-thirds of the column thickness (h), which 
would be 12 inches in this example. Using this 
as the effective depth results in an approximate 
flexural capacity of 142 kip-feet. Note that this 
process may be done in reverse with the Mu/4d 
approach when starting from scratch.
Next, consider the axial capacity. We start 

by examining the column cross-section. We 
need to sum the capacity of the concrete and 
the steel; for simplicity, ignore the area of 
concrete replaced by the reinforcement since 
this is only 1% to 3% of the gross concrete 
area. Since the column is tied, we will use  
= 0.65. Adapting the ACI column equation 
to these ideas yields:

Pn ≈ 0.65(0.80)(0.85f 'c Ag+fy As) ≈ 
0.44f 'c Ag + 0.52f y As

Applying the parameters of our 18-inch square 
column yields Pn ~ 720 kips. I now have two 
points on the interaction diagram that I can use 
to make an educated guess of the interaction 
diagram shape, which can be compared with 
the interaction diagram based on the provi-
sions of ACI 318 (Figure 2). Although there 
are some differences, the approach yields a 
speculative but conservative interaction curve 
that is reasonably close to the “actual” curve. 
This was achieved with only two fundamental 

calculations, rather than the dozens or perhaps 
hundreds of calculations necessary to develop 
the complete interaction curve.
The approximate interaction curve is estab-

lished using the aforementioned calculations as 
a basis and then superimposing what may be 
deemed a “standard” interaction curve shape, 
scaled to match the two previously determined 
points. This curve should not be used where a 
high degree of accuracy is needed. For instance, 
if a point representing simultaneous bending 
and axial loads (Mu, Pu) falls directly on the 
approximate curve, more refined calculations or 
a more conservative design should be considered.
Upon validating a simplified method such 

as this, it becomes possible to adapt it to 
other design scenarios. In particular, in-plane 
flexural design of concrete shear walls can be 
particularly tedious. While redundancy pre-
cludes elaborating upon a simplified method 
for concrete shear wall flexural design, it is 
sufficient to say that most concrete shear walls 
are not loaded anywhere near their peak axial 
capacities. In fact, axial loads on shear walls 
are often so low that they can simply be char-
acterized as vertical beams. Considering the 
typical interaction curve, it is no stretch to 
rationalize that accounting for axial load will 
likely increase flexural capacity, at least to a 
point. In that sense, simplified methods (like 
Mu/4d ) to determine approximate areas of 
boundary element steel can be useful and are 
likely to be conservative.▪

This article is intended for structural engi-
neering practitioners and other design 
professionals seeking to expand their repertoire 
of fundamental skills and tools. The suggested 
techniques and simplified methods are derived 
from general principles of concrete design and 
relevant ACI code provisions. These procedures 
should not be used for final structural design, 
but may serve well as preliminary estimates 
or for verification of final design. Assurance 
of code compliance remains the responsibility 
of the Structural Engineer of Record.
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Figure 2.
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