Economical Design of Insulating Concrete Form (ICF) Walls

Donn C. Thompson, AIA, LEED AP BD+C Senior Director, Building Innovations National Ready Mixed Concrete Association Brandon Wray Director, Building Innovations National Ready Mixed Concrete Association

Form Types

Form Dimensions

History

- 1967 (first patent in U.S.)
- 1980s (basements)
- 1990s (single family)
- 2000s (commercial)
- 2010s (nearly unlimited)

Form Manufacturers

Construction Steps

Electrical, Plumbing and Finishes

Combined Functions

- 1. Concrete form
- 2. Thermal barrier
- 3. Air barrier
- 4. Moisture retarder
- 5. Fire barrier
- 6. Sound barrier
- 7. Substrate for running utilities
- 8. Furring for attaching finishes
- 9. Reinforced concrete structure

Floor Systems Used with ICFs

- Hollow Core
- Insulating Concrete Floors
- Cast-in-place floors
- Composite Steel
- Steel Joist
- Cold Formed Steel
- Wood Trusses

Floors - Hollow Core

Why Hollow-Core?

- Reduced floor heights
 - Reduce exterior finish
- Noise reduction
 - No sound insulation
- Exposed underside
 - Reduce ceiling finish
- Speed of construction
 - No formwork

Insulating Concrete Form Floors

Cast-in-place Systems

Flat Plate System.

Steel Joists

Wood Forms

Metal Deck

Cold Formed Steel

Unlimited Possibilities

ICF Projects Today

Low-, Mid- and High-rise

Most Typical Use of ICFs

- Bearing Wall Building
 - Walls carry vertical loads (and lateral loads)
 - Floors span between walls

Considerations For Selecting ICFs

Best Fit:

Long term owner

- Build and hold/government
- Building Performance is Important
- Punched openings
- Resilience (fire, wind, seismic, flood)

Less Likely:

- Short term owner
 - Build and sell
- Ownership costs/Long term performance not a concern
- Curtain wall

Single Family / Townhomes

Single-family, Bluffdale, UT

Single-family, Possum Kingdom, TX

Townhomes, Orlando, FL

Single-family dev., New Paltz, NY

Townhomes, Boone, NC

Single-family home, Fort Worth, TX

One- and Two-Family Dwelling Form

Multifamily Residential

Beach Green North, Rockaway, NY

Walker's Landing, Milwaukee, WI

Central Ave Villas, Oklahoma City, OK

Hilton Garden Inn, Lewisville, TX

Holiday Inn Express, Louisville, KY

Dormitory, Texas Tech, Lubbock, TX

Multifamily Residential Forms

Commercial

Fire Station, Las Vegas, NV

Community Building, Greensburg, KS

Office Building, Kitchener, Ontario

Office Building, Louisville, KY

Winery, Lompoc, CA

Movie Theater, West Valley City, UT

www.ncsea.com

Commercial Forms

Schools

Alamosa Elementary, Alamosa, CO

Discovery Elementary, Arlington, VA

Glasgow HS, Glasgow, KY

South Warren HS, Bowling Green, KY

Dearing Elementary, Round Rock, TX

Nola Dunn Academy, Burleson, TX

www.ncsea.com

Educational Forms

Why Select ICFs? Low Cost

Combustible: **\$14,812,194**

Non-Combustible: **\$14,818,984**

ICF Energy Savings Vs. Wood

Thermal Mass Energy Savings

Source: Mapping Thermal Mass Benefit, MIT Concrete Sustainability Hub

ICFs Reduce Insurance Costs

5 Los

www.ncsea.com

ICFs Reduce Insurance Costs 10-YEAR COST ANALYSIS

	2-YEAR TOTAL PREMIUM BUILDERS RISK	COMPLETED BUILDING PREMIUM								TOTAL 10-YEAR COST
\$40M PROJECT		YEAR 1	YEAR 2	YEAR 3	YEAR 4	YEAR5	YEAR 6	YEAR 7	YEAR 8	TOTAL
Frame Construction	\$ 240,000 (0.30-0.35 cents)	\$75,000	\$75,000	\$75,000	\$75,000	\$75,000	\$75,000	\$75,000	\$75,000	\$840,000
Concrete Construction	\$ 40,000 (0.05-0.07 cents)	\$50,000	\$50,000	\$50,000	\$90,000	\$50,000	\$50,000	\$50,000	\$50,000	\$440,000

ICFs are Quiet = Reduce Losses on Vacancy

- Walls
 - STC: 55-70
- Floor
 - STC: 50+
 - IIC: 50+

Increased Revenues for Owner

	Individual	Metered	Master Metered			
	Wood	Concrete	Wood	Concrete		
Revenues						
Gross Potential Rent	1447000	1447000	1740000	1740000		
Losses to Vacancy	78000	54600	78000	54600		
Collection Losses	9000	9000	7000	7000		
Losses to Concessions	15000	15000	15000	15000		
Other Revenue	84000	84000	90000	90000		
Total Revenue	1429000	1452400	1730000	1753400		
Operating Expenses						
Salaries and Personnel	137000	137000	173000	173000		
Insurance	28000	16800	31000	18600		
Taxes	169000	169000	158000	158000		
Utilities	35000	28000	104000	83200		
Management Fees	39000	39000	59000	59000		
Administration	28000	28000	38000	38000		
Marketing	19000	19000	18000	18000		
Contract Services	38000	38000	52000	52000		
Repair and Maintenance	52000	52000	81000	81000		
Total Operating Expenses	545000	526800	714000	680800		
Net Operating Income	884000	925600	1016000	1072600		

Speed – Fewer Delays

- Build through winter.
- Place floor slabs 3-7 days after a wall pour.
- Finishes can be attached to interior and exterior forms.
- Install windows while superstructure is being built

Details for Openings

LINTEL SCHEDULE			
OPENING SPAN LIMIT	HORIZ REINFORCING	JAME REINFORCING	STIRRUPS
0" TO 8-0"	(2) #5	(2) 邦 @ 4" D.C.	-
9-1" TO 10-5"	(3) #5 TOP (3) #7 BOT	0189406	#3 1@2". R@12 AT EACH END

TYPICAL I.C.F. WALL LINTEL SCHEDULE

Courtesy of Brown + Kubican

Concrete Plank-Wall Intersection

Courtesy of Brown + Kubican

Foundation Details

Corner/Pilaster Details

Joist and Composite Slab Details

17. OUND LOCK TRACK

Ledger Details

LEDGER DETAIL

STEEL LEDGER INSTALLATION

Sustainability

How can ICF's facilitate sustainable concrete?

ICF and Sustainable Concrete

Curing of Concrete 101:

- Prevent moisture loss
- Maintain/elevate internal temperature

Inherent ICF Benefits:

- Moisture vapor retarder
- Insulating

ICF and Sustainable Concrete

Result:

- Optimal curing environment
- Improved cementitious efficiency
 - psi/lb increase
- Opportunity for reducing cementitious demand
 - Lower cementitious content
 - Improve sustainability

Embodied Carbon of Concrete Constituents

4000 psi mixture with no SCMs

The Top 10 Ways To Reduce Concrete's Carbon Footprint

Communicate Carbon Reduction Goals

2. Ensure Good Quality Control and Assurance

- **3.** Optimize Concrete Design
- 4. Specify Innovative Cements
- **5.** Specify Supplementary Cementitious Materials

- **6.** Specify Admixtures
- 7. Don't Limit Ingredients
- Set Targets for Carbon Footprint
- **9.** Sequester Carbon Dioxide in Concrete
- **0**. Encourage Innovation

www.structuremag.org/?p=20310 www.BuildWithStrength.com

Strategy: Specify Innovative Cements • ASTM C595 **Blended Cements** • ASTM C1157 Performance Based Cements

Strategy:

Specify Supplementary Cementitious Materials

ICF and Supplemental Cementitious Materials

Overdesign:

Closer to

8,000 psi

@ 56 days

SCM Usage:

- Reduce cement = improved sustainability
- Common limitations:
 - Environmental Conditions
 - Fast-paced schedules

Solution: ICF!

SCM Impact on Embodied Carbon

Resiliency:

Performance Assessment of Structural Materials

National Risk Index

NRI – Earthquake

NRI – Hurricane

NRI – Tornado

NRI – Wildfire

Why Resiliency?

<u>California</u> LA County:

- 2.5% of land area
 30% of state's property value ~\$1.9 Trillion
- Risk Index = 100 VERY HIGH

National Institute of Building Sciences

Natural Hazard Mitigation Saves: 2018 Interim Report

National Benefit-Cost Ratio per Peril for Designing Beyond Code Requirements (Adapted from NIBS)

Riverine flood	5:1
Hurricane surge	7:1
Wind	5:1
Earthquake	4:1
Wildland-urban interface fire	4:1
Overall benefit-cost ratio	4:1

Multifamily Apartment Performance Comparison

www.BuildWithStrength.com

- Consider a four-story multifamily apartment style building built to the current building code, ASCE 7-16.
- Evaluate seismic performance for four structural configurations: Insulated Concrete Forms, traditional wood framing, Cross Laminated Timber and steel framing.
- Consider performance in three cities: Los Angeles, Seattle and Memphis.
- Estimate cost of construction for each configuration.
- Evaluate net benefits among the four configurations in terms of reduced earthquake damage.
- Determine the expected USRC performance rating for each configuration.

Typical Building Plan

Credit: NRMCA

- Four stories, 9' to 10.5' tall
- 360' x 68' in plan over height
- Founded on slab and strip footing foundation
- Stucco exterior

Typical Building Details

USR

Multifamily housing construction costs

H

Based on estimates from NRMCA using **RS Means**

Based on high variability of lumber costs, evaluated **100%** and **125%** of current lumber pricing

Costs are typically within 6% of each other

Strength and stiffness of building configurations

All buildings are designed to basic requirements of ASCE 7-16

Certain materials are inherently stiffer and stronger than others

Higher strength reduces structural damage

Higher stiffness reduces building drift and certain nonstructural damage

Property damage and recovery time

Design Level Event (DLE) is building code design level

Property damage represents damage to structure and nonstructural systems.

Functional recovery time is time to restore basic function of building.

Total Estimated Losses

Total losses include **Property** damage and rental losses

Net benefit for Design Level Event includes reduced losses accounting for construction cost of ICF relative to other configurations

High Wind

Both Built with ICF

Wildfires

Both Built with ICF

Debris Hazard

Projectiles

vs. Concrete

vs. Wood

PREPARING TODAY REDUCES THE CONSEQUENCES OF A DISASTER TOMOROW. VISIT READY.GOV

The Sky's the Limit

Build With Strength: Concrete Design Center

Questions?

Website: www.buildwithstrength.com

Example: https://structurepoint.org/publication/case-studies.asp

Donn Thompson: <u>DThompson@nrmca.org</u> 224-627-3933

Brandon Wray: <u>Bwray@nrmca.org</u> 408-806-0453

