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structural ANALYSIS
Reducing FEM Solution Errors with  
Quad Precision Arithmetic
By Junlin Xu

Numbers in computers can only be represented by a fixed number 
of digits. The predominant number type in Finite Element 

Method (FEM) software packages is Double-Precision, which is 8 
bytes in size. This gives about 15 digits of accuracy. However, during 
the solution of FEM equations, numerical difficulties or errors may 
be encountered in certain modeling scenarios due to truncation and 
round-off errors. The introduction of the Quad-Precision number type, 
16 bytes in size providing about a 34-digit accuracy, can reduce FEM 
solution errors. The author presents a few examples to illustrate the 
differences in using Double Precision and Quad Precision numbers.
A few types of errors are associated with finite element/structural 

analysis programs.
1)  Input/output errors: user input mistakes while entering input 

data or misinterpreting program results.
2)  Modeling errors: assumptions made in the formulation of 

mathematical models (e.g., using elastic material properties 
for concrete).

3)  Discretization errors: using discretized finite element models 
for continuous mathematical models (e.g., using straight ele-
ments to model a curved edge).

4)  Solution errors: numerical errors during the process of 
numerical solutions of finite element equations.

Although all the above errors are important, this article focuses on 
solution errors.
Finite element solutions boil down to solving a system of linear 

equations:
[K]{u} = {R}   (Eqn 1)

where [K] is the global stiffness matrix, {u} is the displacement vector, 
and {R} is the load vector.
During the solution of the above system of linear equations, trun-

cation errors, round-off errors, and accumulation errors can be 
experienced. This article illustrates these errors through examples.

Basic Number Concept in Computers
Numbers, like any other information in computers, are represented 
by bytes. A byte consists of eight bits. One bit can represent 2 states 
(on and off), two bits can represent 22 states, and so on. Therefore, a 
byte can represent 28 = 256 states. There are two main floating-point 
(non-integral) number types in computers: 4-byte (or 32-bit) single-
precision type and 8-byte (or 64-bit) double-precision type.
As we all know, infinite numbers exist between any two different 

numbers. So how can we represent numbers accurately with a limited 
number of bits or bytes in a computer? The answer is we cannot. We 

can only represent numbers in a computer by approximation. For the 
32-bit single-precision number type, we generally use 1 bit to represent 
signs (positive or negative), 8 bits to represent exponents, and 23 bits 
to represent actual digits. Since 223 = 8388608, it can be said that a 
single-precision number has an accuracy of about 7 significant digits. 
For the 64-bit double-precision number type, we generally use 1 bit to 
represent signs, 11 bits to represent exponents, and 52 bits to represent 
actual digits. Since 252 = 4.5 E15, a double-precision number could be 
viewed as having an accuracy of about 16 significant digits.
The concept of significant digits can have unexpected results in soft-

ware computations. For example, if we have three double-precision 
numbers x = 1.234e18; y = 0.1; z = x + y; both x and z will still equal 
to 1.234e18. A more serious issue is that the number y / (z–x) yields 
infinity instead of 1. In today’s finite element programs, double preci-
sion is the predominant number type used in their implementations 
and is sufficient in most cases. However, double precision may not 
be accurate enough in some uncommon cases.

Truncation and Round-Off Errors
Suppose we have the following system of equations in matrix form 
[K]{u} = {R}

(Eqn 2)22500000
−9375000

−9375000
9375000

115.3144
6.3810=[ ( () )] Q2

Q3

Solving the equations by the Gauss elimination method using 15 
significant digits yields the following “accurate” solution:

9.27203047619049e − 06
9.95267047619048e − 06( )=( )Q2

Q3

Now pretend that a computer can only represent each number 
accurately to 3 significant digits. Then the original system of equa-
tions Equation 2 becomes

(Eqn 3)22500000
–9380000

–9380000
9380000

115
6.38[ ( )] =( )Q2

Q3

Here, we chopped off the stiffness matrix and load vector terms from 
Equation 2 to 3 significant digits. Therefore, we have a truncation 
error introduced in Equation 3 even if we solve the equations accu-
rately with 15 significant digits. If we continue to solve the equations 
with 3 significant digits in each arithmetic step, additional round-off 
errors are introduced, and the following solution results:

9.24e − 06
9.95e − 06( )=( )Q2

Q3

N1 (0,0,0) N2 (10,0,0)B1 B2

1 kip

N3 (20,0,0)

Figure 1. One-dimensional elements.
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The accumulated truncation and round-off errors, r2 and r3, for 
displacements Q2 and Q3 are:

( )0.03203047619049e − 06
0.00267047619048e − 06

=( )r2

r3 ( )(9.27203047619049 − 9.24)e − 06
(9.95267047619048 − 9.95)e − 06 =

A Simple Structural Model
In forming the global stiffness [K] in Equation 3, each stiffness term 
Kij is calculated by adding the relevant stiffness terms of all elements 
connected to the associated degree of freedom. For simplicity’s sake, 
assume Kij comes from two elements with the relevant element stiff-
ness terms k1 and k2; thus, Kij = k1 + k2. If k1 is much smaller than 
k2 (or vice versa), significant information is irrevocably lost due to 
truncation error. As a result, the solution for displacements may be 
inaccurate, incorrect, or impossible.
The following simple structure consists of two 10-foot one-dimensional 

elements (Figure 1) and is subjected to an axial load of 1 kip at the tip. 
The material’s modulus of elasticity, E, equals 29000 kips per square 
inch (ksi). The first element (B1) has a cross-sectional area of 0.0001 
inches2. We vary the cross-sectional area of the second element (B2) using 
0.0001, 0.01, 1, 100, 10000, 1e+06, 1e+10, 1e+12, and 1e+14 inches2.
The results in Table 1 are from a Real3D software program using 

double-precision arithmetic.
The results deteriorate as the stiffness mismatch between the two 

elements becomes larger. The result becomes inaccurate when  
k2/k1 = 1.00e10 / 0.0001 = 1.0e14, unreliable when k2/k1 = 1.00e12 

/ 0.0001 = 1.0e16, and unattainable when k2/k1 = 1.00e14/0.0001 = 
1.0e18. This behavior is expected due to the double-precision number 
having an accuracy of about 16 significant digits.

A Cantilever Beam Modeled  
with Multiple Segments

Numerical difficulties may also arise due to the accumulation of 
round-off errors, primarily when a model consists of a large number 
of elements. The following cantilever beam example is modeled with 
multiple segments of equal lengths, thus without any element stiff-
ness mismatches.
A 100-inch-long horizontal cantilever beam is subjected to a vertical 

point load of -10,000 pounds (lbs.) at the tip.
Material properties: E = 2.9e7 pounds per square inch (psi), Poisson’s 

ratio, ν = 0.3
Section properties: a moment of inertia I = 200 inches^4
Model the beam with 1; 1,000; 10,000; 20,000; and 50,000 mem-

bers or segments.
Also, beam shear deformations are not considered.
The displacement and rotation at the tip of the beam may be cal-

culated by hand as follows:

Δ = PL3

3EI = −0.5747 inches (shear deformation ignored)

θ = PL2

2EI = −0.00862 radians

The results in Table 2 are from the Real3D software program using 
a double-precision solver and a quad-precision solver.

N2 N24 N53 N74

Table 1. Simple structural model.

Element B2  
sectional area (in2) k2/k1 Displacement at N2 (in) Displacement at N3 (in) Beam B2 Axial Force (kip)

0.0001 1.0e00 4.137931036344828e+01 8.275862070827586e+01 1.000000000000000e+00

0.01 1.0e02 4.137931035403932e+01 4.179310345748760e+01 1.000000000000000e+00

1.00 1.0e04 4.137931035293789e+01 4.138344828397237e+01 1.000000000000000e+00

100 1.0e06 4.137931034152962e+01 4.137935172083997e+01 1.000000000000000e+00

10000 1.0e08 4.137931101965204e+01 4.137931143344515e+01 1.000000015258789e+00

1.00e6 1.0e10 4.137932775857748e+01 4.137932776271542e+01 1.000001953125000e+00

1.00e8 1.0e12 4.137708097619912e+01 4.137708097624051e+01 1.000125000000000e+00

1.00e10 1.0e14 4.166666666666625e+01 4.166666666666666e+01 9.920000000000000e-01

1.00e12 1.0e16 3.125000000000000e+01 3.125000000000000e+01 1.024000000000000e+00

1.00e14 1.0e18 No Solution No Solution No Solution

Note:  The stiffness (k = E * A / L) is proportional to the section area.

Figure 2. A continuous beam.

Table 2. Cantilever beam example.

Number of elements

1 1,000 10,000 20,000 50,000

Double precision 
arithmetic

Displacement (in) -0.5748 -0.5748 -0.6522 -0.1534 No Solution

Rotation (radian) -8.621e-03 -8.621e-03 -9.618e-03 -2.554e-03 No Solution

Quad precision 
arithmetic

Displacement (in) -0.5747 -0.5747 -0.5747 -0.5747 -0.5747

Rotation (radian) -8.621e-03 -8.621e-03 -8.621e-03 -8.621e-03 -8.621e-03

Note:  The stiffness (k = E * A / L) is proportional to the section area.

continued on next page
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This example is probably the simplest struc-
tural model that can be solved by either hand 
or an analysis program. However, it could 
be a very challenging numerical problem, as 
shown. The standard double-precision solver 
tends to deteriorate in solution accuracy as the 
number of elements increases. In the example, 
the solver becomes unstable after 10,000 ele-
ments. For the model with 50,000 elements, 
some diagonal terms in the global stiffness matrix become negative 
during the factorization process due to round-off errors. As a result, 
the solver has to terminate, and the solution is no longer obtainable. 
No results are actually better than wrong results. You are encouraged to 
solve this model with your familiar structural analysis software!
The quad precision solver is much more accurate and stable. The 

quad-precision number type uses 16 bytes or 128 bits with 1 bit to 
represent signs, 15 bits to represent exponents, and 112 bits to rep-
resent actual digits. It has an accuracy of about 34 significant digits. 
(Can you figure out why? It’s because 2^112 = 5.2E33). Therefore, 
it is more tolerant to round-off error accumulation. Consistent and 
correct results from the quad precision solver demonstrate its superior 
accuracy for up to 50,000 or more elements for this example.

A Continuous Beam with  
Large Stiffness Differences

The following 700-foot continuous bridge (Figure 2, page 13) is dis-
cretized into multiple segments of different lengths: 0.3, 9.7, 20@10, 
0.3, 9.7, 27@10, 0.3, 9.7, 20@10 feet. Each segmented beam is 
subjected to a uniform load of -0.9 kip/ft in the global Z-direction.
Material: E = 30457.9 ksi, ν = 0.25
 Sections: Izz = 2.40251e + 06 in4 , Iyy = 619965 in4,  
J = 2.40251e+06 in4, A = 255.441 in2, Ay = Az = 0.0 in2

Support conditions:
@Node 2: restrained in Dx, Dy, Dz, and Dox degrees of freedom
@Node 24: restrained in Dy, Dz, and Dox rotational degrees of 

freedom. There is a large support settlement of 14.5107 inches in 
the Z direction.

@Node 53: restrained in Dy, Dz, and Dox degrees of freedom
The results in Table 3 are from the Real3D software program using 

the double-precision skyline matrix solver, double-precision sparse 
matrix solver, and quad-precision skyline matrix solver (see Note 1).
The total support reaction in the Z direction should be 700 ft * 0.9 

kip/ft = 630 kips. However, as shown, both the double-precision 
skyline solver and sparse solver give an inaccurate support reaction 
at Node 24 that is reflected in the total support reaction. The reasons 
for this inaccuracy are due to the following:

1)  There is a significant stiffness variation between adjacent 
beams at the support.

2)  The Real3D software program uses a penalty approach  
(see Note 2) to enforce support restraints when  
constructing global stiffness matrices.

3)  The support settlement (load value) is large.
These reasons result in significant truncation and round-off errors 

with double-precision arithmetic. On the other hand, the quad 
precision arithmetic yields an accurate support reaction at Node 24.
*Note 1: The skyline and sparse matrix refer to how the global stiffness 

matrix is stored. The sparse matrix solver generally uses much less memory 
and runs faster than the skyline matrix solver. Note 2: The penalty 
approach uses springs with large stiffness values to model supports. This 
approach is popular among structural analysis software implementations 
due to its simplicity and intuitiveness.

Rigid Diaphragm Modelling
In modeling rigid diaphragms such as a concrete floor in a frame, 
master-slave (where slave nodes are constrained to follow a master 

node) degrees of freedom DX, DZ, and 
DOY (rotation about the global Y axis) 
could be used, assuming Y is the verti-
cal axis. This is mathematically imposing 
constraint equations in the global stiffness 
matrix. However, this approach may not 
be ideal since DX and DZ are not equal 
for all the nodes on the diaphragm plane 
when subjected to unsymmetrical loading.
A more reasonable way to model rigid 

diaphragms (Figure 3) is to add ficti-
tious members with very large in-plane 
stiffnesses relative to the model’s actual 
members. The fictitious members must be 
interconnected with all the nodes on the 
diaphragm plane. These fictitious mem-
bers can then be assigned large material 
properties and in-plane sectional prop-
erties based on those of actual members 
and a large stiffness multiplier (say 1.0e4). 
This ensures the rigid in-plane diaphragm 
action. Some structural software programs 
in the market implement this feature 
automatically.

Table 3. Continuous beam example.

Support Reactions
Double-precision  
skyline arithmetic

Double-precision  
sparse arithmetic

Quad-precision  
skyline arithmetic

Rz @Node 2 (Kip) 49.044 49.044 49.044

Rz @Node 24 (Kip) 225.242 223.343 229.849

Rz @Node 53 (Kip) 351.108 351.108 351.108

Total Support Reaction (Kip) 625.394 623.495 630.000
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A potential problem with the second 
approach is using a large stiffness mul-
tiplier in the double-precision solver. 
It artificially increases the mismatch of 
member stiffness terms, thus increasing 
the likelihood of numerical difficulties 
during the solution. With quad precision, 
this problem can be easily avoided.

Tips for Detecting and  
Minimizing Solution Errors

As the previous examples show, structural 
analysis software programs may not always 
yield accurate results. There are some 
inherent errors associated with construct-
ing and solving systems of equations. In 
certain situations, these errors may become 
intolerable. Of course, structural analysis 
software, like any other software program, 
may contain defects (i.e., software bugs). A 
good structural engineer should not blindly 
trust software results.
If possible, a suitable software program should warn users when numeri-

cal difficulties or errors are encountered during a solution. A useful 
measure is the number of significant digits lost during the analysis solution. 
It can be computed based on the diagonal decay ratio (ri) as defined below.

ri = Kii / Pii

where Kii is the original diagonal coefficient of the global stiffness 
matrix, and Pii is the reduced value of 
Kii just before it is used for back-substi-
tution. The number of significant digits 
lost is about log10(ri). For example, if ri 
is 108, then 8 digits are lost. The results 
given by double-precision solvers may be 
unreliable if 12 or more significant digits 
are lost during the solution process.
The following are a few tips to minimize 

solution errors when using structural 
analysis software:

a)  Avoid large stiffness differences 
between adjacent elements. For 
example, for one-dimensional 
frame members, the member 
lengths should not vary too much; 
for two- or three- dimension finite 
elements such as shells or brick ele-
ments, the element sizes and shapes 
should be close or nearly the same.

b)  Use master-slave degrees of 
freedom if possible (e.g., use 
displacement constraints for rigid 
beams in two-dimensional frames).

c)  Use higher precision (e.g., quad-
precision) number arithmetic if 
needed. If your software vendor 
does not currently support it, ask 
for it. It should be noted that quad-
precision numbers take twice as 
much memory as double-precision 
numbers. It is also significantly 

slower due to the lack of direct hard-
ware support and extra calculations.

d)  Never use any finite element 
software programs that use single-
precision arithmetic in their solver. 
This may be a problem in some 
older structural software programs 
when computer memory was a 
premium. Single-precision number 
types should not be used in finite 
element implementations.

e)  Pay attention to software errors or 
warning messages such as significant 
digits lost during factorization of 
global stiffness matrices.

f)  Check if the summation of support 
reactions is equal to the total load. 
Since finite element implementations 
are displacement-based, if displace-
ments are unreliable due to unstable 
solutions, all other results, such as 
support reactions, are unreliable.■

References are included in the PDF version of  
the online article at STRUCTUREmag.org.

Junlin Xu is the President of Computations & Graphics, Inc. and the author 
of the Real3D structural analysis program (junlin_xu@cg-inc.com).

Design Guide on the ACI 318 
Building Code Requirements 
for Structural Concrete

NEW! 

2020; 1st Edition
Print/PDF Version: $149.95 member / $199.95 non-member 

With OVER 990 pages and 140 worked-out examples, 
this unique Design Guide assists in the proper application 
of the provisions in the 2019 edition of Building Code 
Requirements for Structural Concrete (ACI 318-19) for cast-
in-place concrete buildings with nonprestressed reinforcement. 

CRSI Design Checklist Suite 

The new Design Checklist Suite includes all 13 Design 
Checklists at a discounted price with a free custom 
binder to safely store the Checklists in one place. 
Calculators, in the form of Microsoft Excel™ spreadsheets, 
are provided for each Design Checklist which expedite 
the overall checking procedure. Printed on synthetic paper 
for durability!

 
Print Version Only: $74.95 member / $149.95 non-member
Individual Design Checklists available, pricing varies by product.

CRSI’s Design Guide and Design Checklists are indispensable resources for structural  
engineers, educators, students, building officials, and individuals studying for licensing exams.

Save 10%* - Use Discount Code STRUCTURE-10 at Check-Out
* Discount excludes Premium Package offer and Bundles. 

Buy the 
PREMIUM PACKAGE 

and get both at a 
special rate!

Shop www.crsi.org for all our 
industry-trusted publications!

A
D

VERTISEM
EN

T–For A
dvertiser Inform

ation, visit STRU
CTU

REm
ag.org

Figure 3. Rigid diaphragms.
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