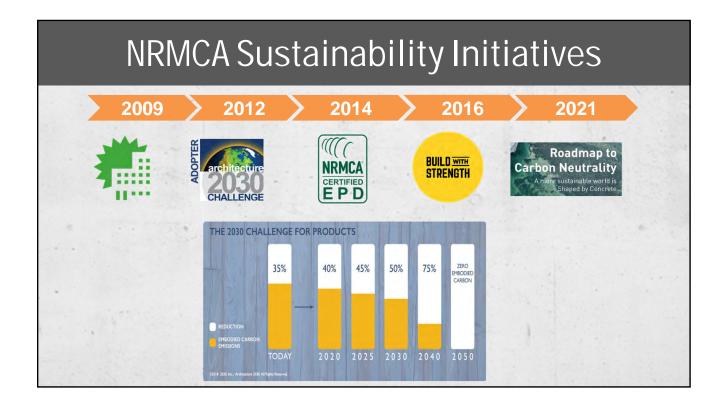
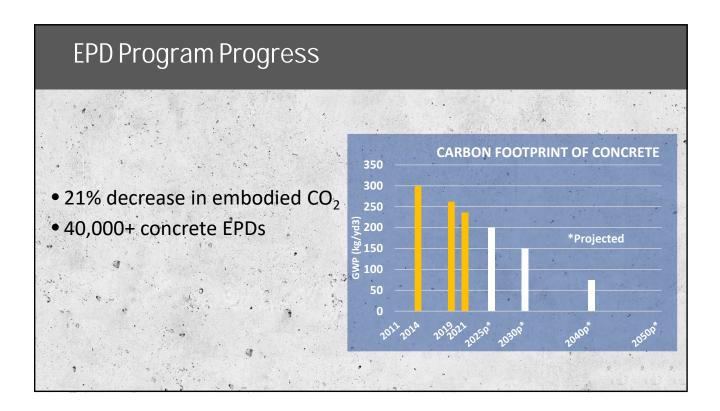




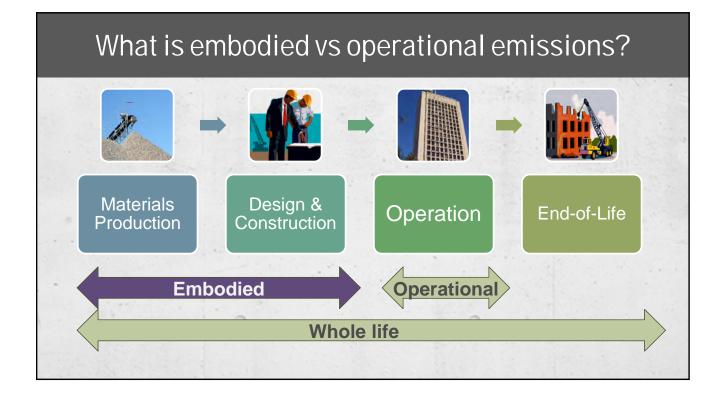
- Understand the difference between performance-based specifications and prescriptive specifications
- Discover how performance-based specifications can improve performance and lower environmental impact of concrete structures
- Learn how to implement performance-based specifications in projects
- Demonstrate the importance of balancing structural and architectural performance of concrete with green building strategies

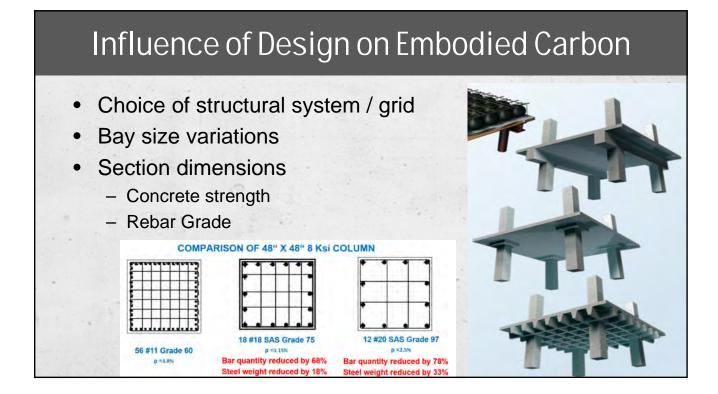
BUILD WITH STRENGTH


NRMCA

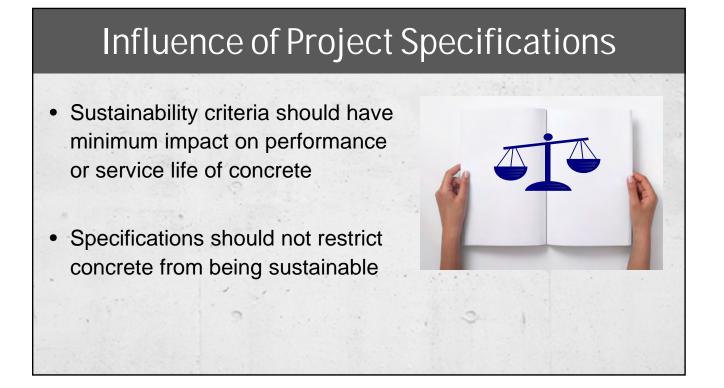


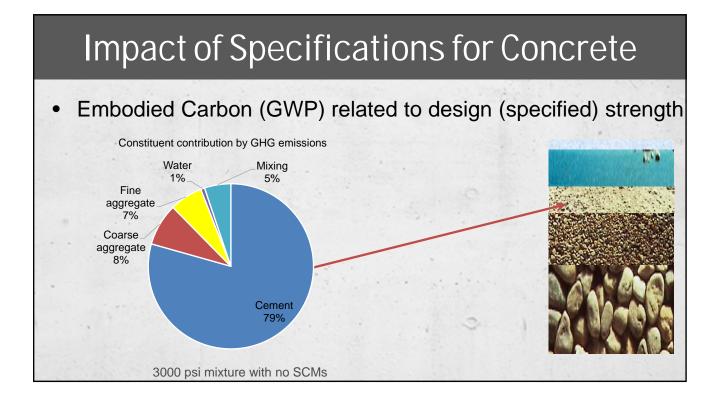
Commitments to Net Zero Double in Less Than a Year 22 regions, 452 cities, 1,101 businesses, 549 universities and 45 of the biggest investors

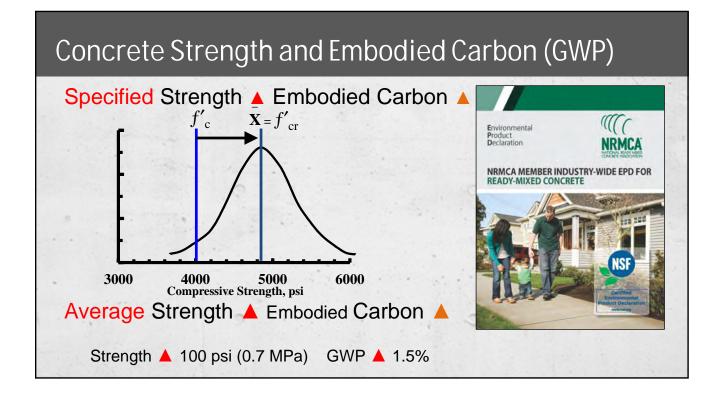




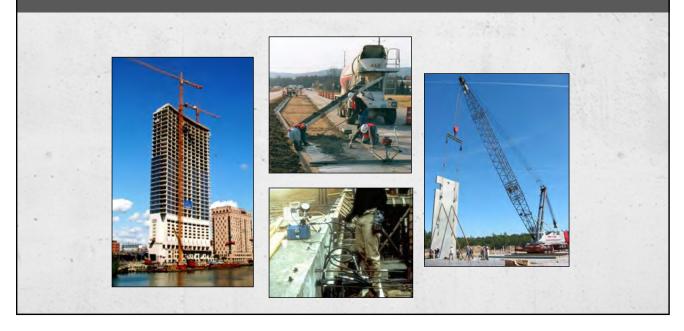
Green Building Standards & Initiatives







©National Ready Mixed Concrete Association



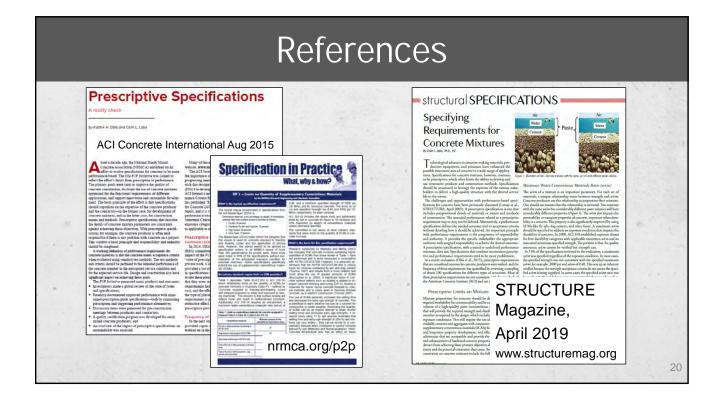
©National Ready Mixed Concrete Association

Is This Concr	ete Sustainable?	
50% portland cemer Is this Sustainable (
Portland cement	208 kg/m ³ (B 2 w/yd ³)	
Slag cement	178-kg/ 1 ³ 300 lb/yd ³)	
 Silica fume	ky ³ (50 lb/yd ³)	
 Coarse aggregate	68 kg/m ³ (1800 lb/yd ³)	
Fine aggregate	712 kg/m ³ (1200 lb/yd ³)	and a series
 Water	178 kg/m ³ (300 lb/yd ³)	
 Air content	6%	

High Early Strength Concrete

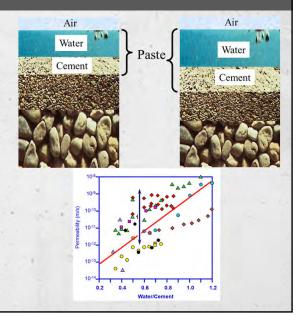
©National Ready Mixed Concrete Association

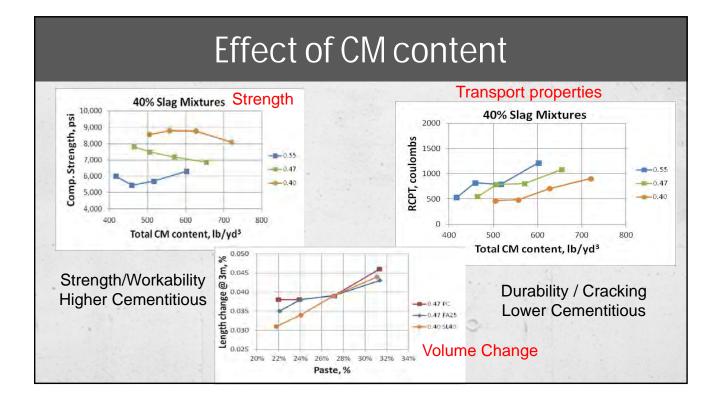
Prescriptive Specifications

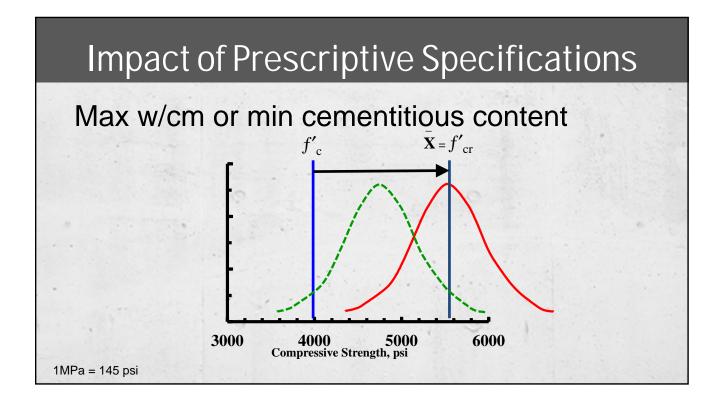

2.1.2 Water-Cement Ratio

Maximum water-cement ratio (w/c) for concrete shall be 0.40 by weight, for all work.

segregation or bleeding. The cementitious materials content of concrete shall be at least 675 pounds per cubic yard. Except that concrete to be placed by tremie the cementitious materials content shall be at least 725 pounds per cubic yard.


c. Fly Ash: Fly Ash shall have a high fineness and low carbon content and shall exceed the requirements of ASTM-C-618, "Specification for Fly Ash and Raw or Calcined Natural for Use in Portland Cement Concretes" for Class F, except that the loss of ignition shall be less than 3% and all fly ash shall be a classified processed material. Fly ash shall be obtained from one source for the concrete delivered to the project. Complete chemical and physical analysis of the fly ash shall be submitted to the Architect prior to use. Concrete mixes proportioned with fly ash shall contain not less than 10% nor more than 20% by weight of cement to fly ash.


Most Common Prescriptive	Requirements
Prescriptive Requirement	Frequency Seen
Restriction on SCM quantity	85%
Max w/cm (when not applicable)	73%
Minimum cementitious content	46%
Restriction on SCM type, characteristics	27%
Restriction on aggregate grading	25%



Specifying Water-Cement Ratio

- Paste volume impact
- No "credit" for SCMs
- May not assure intent
- Lower is not always better
 - Impacts sustainability
 - Impacts constructability
 - Associated impact on performance

А	vre we \$	Signific	cantly Over-	designed?)
• 7	Typical "	overdes	sign" ~15%> _	f´c	
	w/cm	f'_{c}	Non Air	Air-Ent	
	0.40	5000	37%	23%	
	0.45	4500	34%	21%	
	0.50	4000	30%	18%	1.000
1	0.55	3500	29%	14%	
			33%	19%	

	Impact of P	rescri	ption		
	Specification Provision	Impa	act of provisio	n	
1.	·	Sustainability	Performance	Cost	
	Restrictions on characteristics of aggregates	\checkmark	\leftrightarrow	\uparrow	
	Invoking a minimum content for cementitious materials	\rightarrow	\$	1	
	Prescriptive requirements toward green building credit	1	\$	\$	
•	Restriction on SCM characteristics	\checkmark	\checkmark	1	
	Restriction on quantity of SCM	\checkmark	\checkmark	1	
Ref:	Lemay, Lobo, Obla, Hanley Wood University, 20)19			

Impact of Prescription

	Specification Provision	Impact					
	specification Provision	Sustainability	Performance	Cos			
	1. Restrictions on type and source of cement	+	\$	\uparrow			
	2. Not permitting cements conforming to ASTM C1157 and ASTM C595	4	\leftrightarrow	\leftrightarrow			
	3. Restriction on cement alkali content	4	\leftrightarrow	\uparrow			
1	4. Restriction on type and source of aggregates	4	\leftrightarrow	Ť			
1	5. Restrictions on characteristics of aggregates	\downarrow	\leftrightarrow	\uparrow			
	6. Minimum content for cementitious materials	\downarrow	\$	\uparrow			
	7. Restriction on quantity of SCM	\downarrow	\downarrow	\uparrow			
1	8. Restriction on type and characteristics of SCM	4	\downarrow	\uparrow			
1	9. Restriction on type or brands of admixtures	\leftrightarrow	\downarrow	Ť			
	10. Same class of concrete for all members in a structure	4	\leftrightarrow	个			
	11. Requiring higher strength than required for design	\downarrow	\leftrightarrow	\uparrow			
	12. Invoking maximum w/cm when not applicable or one that is not compatible with the design/specified strength.	\downarrow	\leftrightarrow	1			
	 Requiring a high air content or requiring air content for concrete not exposed to freezing and thawing 	\downarrow	\downarrow	Ť			
	14. Restricting the use of a test records for submittals	+	\downarrow	1			
	15. Restriction on changing proportions when needed to accommodate material variations and ambient conditions	\downarrow	\downarrow	Ť			
	16. Requirement to use potable water	4	\$	Ť			
	17. Not permitting recycled aggregates and materials	\downarrow	\$	\$			
	18. Not requiring accredited testing labs	4	\leftrightarrow	\uparrow			
	19. Specific limitations on slump	4	4	\$			

7. Quantity of SCM: Some specifications place limits on the quantity of SCMs. Often, the use of more than one type of SCM is prohibited. This prevents optimizing concrete mixtures for performance and durability. The only building code restriction is for exterior concrete subject to application of deicing chemicals. Maximum limits on the quantity of SCM increases cost and does not support sustainable development. Increasingly, projects seeking green certification impose prescriptive requirements on concrete mixtures such as minimum replacement for cement or minimum recycled content. These requirements can often impact the performance of fresh and hardened concrete properties, such as setting characteristics, ability to place and finish and rate of development of in-place properties. In the long run, this may impact the quality of construction or the service life of the structure. The implication to initial cost may be reduced, but it could cost more in the long term. Alternatives to limiting quantities of SCM to lower environmental impact are discussed later.

Strength

Shrinkage

Permeability

Thermal effects

Permeability

To Achieve Optimized Performance

- Quality of paste
 - Supplementary cementitious materials
 - Admixtures
- Quantity of paste minimize
 - Cementitious materials
 - Control of water
 - Aggregate grading
- Improved Quality Control
- Specific durability issues ASR, sulfate resistance
- Constructability

The specification should not restrict achieving these goals

Performance Alternatives

- Permeability
 - RCP ASTM C1202 (1500 coulombs?)
 - Bulk resistivity ASTM C1876 (120 ohm.m?)
 - Surface resistivity AASHTO T 358
- Shrinkage
 - ASTM C157 (0.05%)
 - Define specimen size; duration of curing and drying
- ASR ASTM C1293; ASTM C1567

ACI 318-19 – Durability Requirements

Chapter 19

19.3.1.1

19.3.1 Exposure categories and classes

19.3.1.1 The licensed design professional shall assign exposure classes in accordance with the severity of the anticipated exposure of members for each exposure category in Table 19.3.1.1.

The licensed design professional shall assign exposure classes in accordance with the severity of the anticipated exposure of members for each exposure category according to Table 19.3.1.1

					Additional requirement	s	Limits on
Exposure Categories Durability (ACI 318)	Exposure class	Maximum w/cm ^[1,2]	Minimum fe', psi		Air content		cementitious materials
Durahility (ACI 218)	FO	N/A.	2500	1	N/A		N/A
	Fi	0.55	3500	Table 19.3.3.1	for concrete or Table 19.3	3.3 for shotcrete	N/A
	F2	0.45	4500	Table 19.3.3.1	for concrete or Table 19.3	3.3 for shotcrete	N/A
	F3	0.40 ^[3]	5000 ^[3]	Table 19.3.3.1 1	for concrete or Table 19.3	3.3 for shotcrete	26.4.2.2(b)
				Cem	entitious materials ^[4] —	Types	Calcium chlorida
				ASTM C150	ASTM C595	ASTM C1157	admixture
	SO	N/A	2500	No type restriction	No type restriction	No type restriction	No restriction
	S1	0.50	4000	II ^{[5][6]}	Types with (MS) designation	MS	No restriction
	S2	0.45	4500	V ^[6]	Types with (HS) designation	HS	Not permitted
	Option 1 \$3	0.45	4500	V plus pozzolan or slag cement ^[7]	Types with (HS) designation plus pozzolan or slag cement ^[7]	HS plus pozzolan or slag cement ^[7]	Not permitted
	Option 2	0,40	5000	V ^[8]	Types with (HS) designation	HS	Not permitted
	WO	N/A	2500	-	N	one	
	W1	N/A	2500		26.4.	2.2(d)	
	W2	0.50	4000		26.4	2.2(d)	
				content in concrete	uble chloride ion (Cl ⁻) e, percent by mass of materials ^[9,10]		
				Nonprestressed concrete	Prestressed concrete	Additional	provisions
	C0	N/A	2500	1.00	0.06	No	ne
	C1	N/A	2500	0,30	0.06		
	C2	0.40	5000	0.15	0.06	Concrete	cover ^[11]

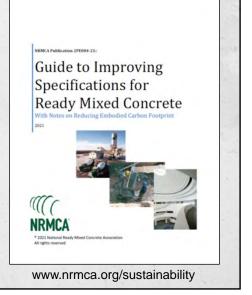
Requirements for	Concrete ((partial)
------------------	------------	-----------

Concrete Mixtures						
Members	Exposure	f' _c load/dur	w/cm	NMSA		
Pool and deck	F2, S0, W1, C1	4,000 / 4,500	0.45	¾-in.		
Interior slabs and beams	F0, S0, W0, C0	4,000 / n/a	n/a	³₄-in.		
Interior columns	F0, S0, W0, C0	8,000 / n/a	n/a	¾-in.		
Balconies	F3, S0, W0, <mark>C2</mark>	4,000 / 5,000	0.40	¾-in.		
Exterior walls	F1, S0, W0, C1	3,500 / 3,500	0.55	1-in.		
Foundation	F0, <mark>S1</mark> , W0, C1	3,000 / 4,000	0.50	1-in.		
Parking Slabs	F0, S1, W0, <mark>C2</mark>	3,000 / 5,000	0.40	¾-in.		

Specify Exposure Class (ACI 318)

2

- Can test age >28 days?
- Performance criteria (permeability, shrinkage, etc.)


Evolution to Performance												
Identify Exposure Classes												
	-	Dur	ability	y Expo	sure	Specified	Max w/cm or	Nom. max	Air	Slump/	Chloride	Temp
Member	Mix ID		Strength, f', psi	Performance Alternative	Aggregate, in.	Content	Slump Flow	Limit	Limit			
Footings												
Foundation Walls												
Slabs-on-grade												
Exterior slabs						-						
Suspended slabs (interior)												
Suspended slabs (exterior)												
Frame members												
Columns (interior)												
Columns (exterior)												
Walls (interior)												
Concrete toppings												

	Evolution to Performance										
•	Perform	ance	e requ	iren	nen	ts as	app	olicab	le		
	Member	RCP, C1202	Shrinkage, C157	Freeze C666	Thaw C457	ASR	MOE, C469	Thermal Control Plan	Density	Other	
	Footings					х					Jone La
	Foundations					х		x			
	Slabs on Grade		x			х					
	Exterior Slabs	x		x							
	Interior Slabs		x						X (LW)		
	Frame Members						х				
	Interior Columns						x				
	Exterior Columns										
	Interior Walls										
	Exterior Walls					х					
1200	Slab Toppings					x					

Specifications for Sustainability

General Guidelines

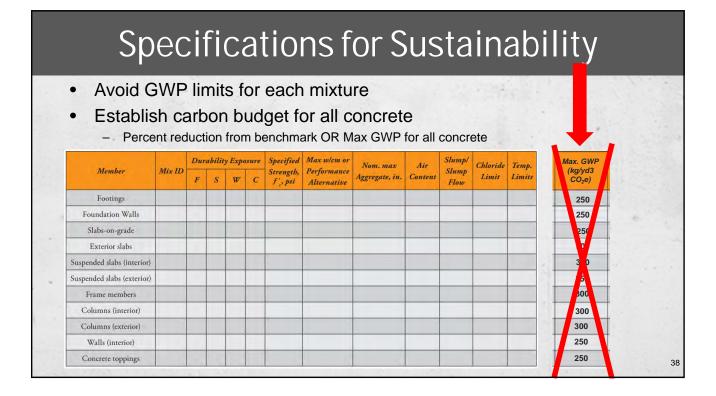
- Address prescriptive limits
- Do not restrict use of materials
 - Blended cements
 - SCMs and admixtures
 - Recycled materials
- Avoid specifying means and methods
- Address performance requirements
 - By application
- Consider innovation

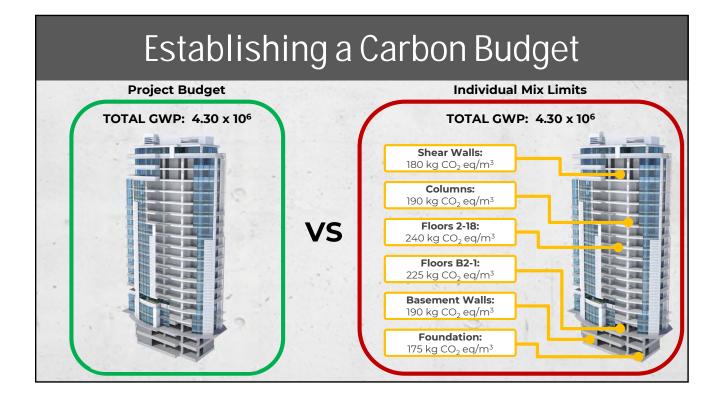
Factors Impacting Strength / GWP

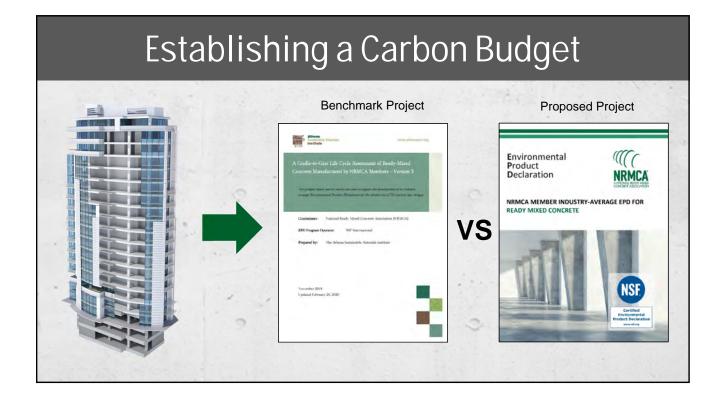
Increases Strength & GWP

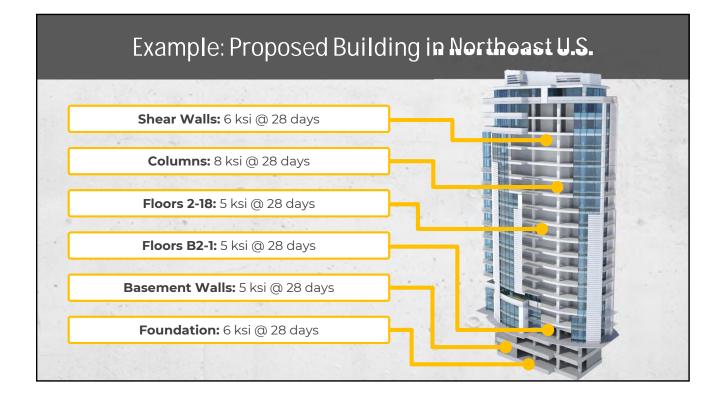
- Prescriptive requirements
- Early age strength
- Quality control
 - standard deviation
 - overdesign
- Quality Assurance
 - acceptance testing

Decrease GWP @ target strength

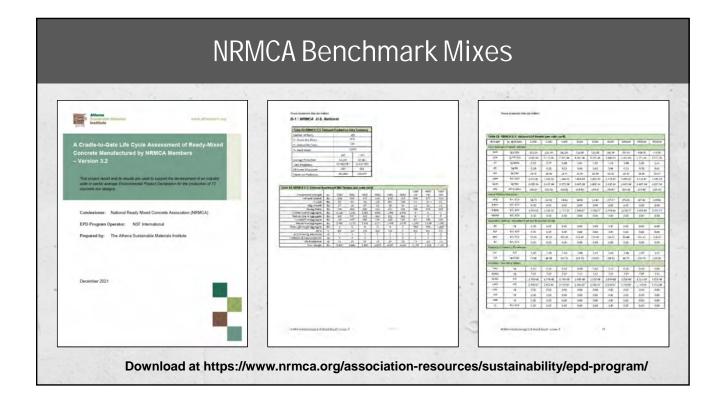

- Paste volume
- Use of SCMs / admixtures
- Later strength age requirement

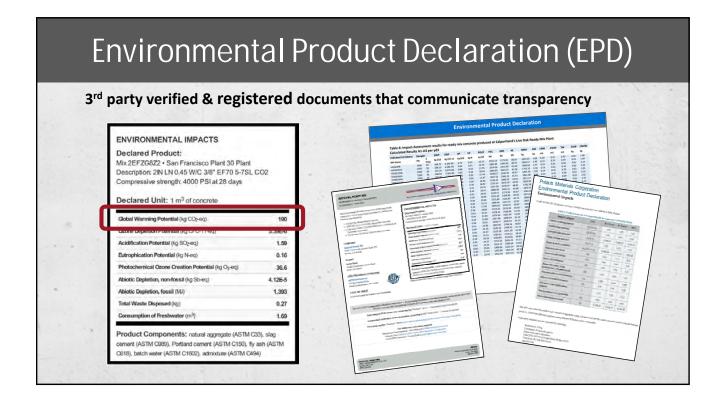

Designer


- Optimizing design
- Use anticipated strength to advantage


Factors Impacting Embodied Carbon

- Typically higher
 - Early strength PT, formwork removal
 - Self-consolidating concrete
 - Workability for Placement
 - Slabs finishing
 - Higher air content
- Can be lower
 - Later age strength
 - Mass concrete
 - Performance-based shrinkage, permeability, modulus...





Estimating Quantities and Properties of Concrete

Concrete Element	Concrete Volume (yd ³)	Benchmark Mixes (benchmark)*	Proposed Mixes (IW-EPD)*
Shear Walls	7,630	6,000 psi	6,000 psi 30% slag, 20% fly ash
Columns	366	8,000 psi	8,000 psi 40% fly ash
Floors 2-18	4,533	5,000 psi	5,000 psi 30% slag
Floors B2-1	1,067	5,000 psi	5,000 psi 40% fly ash
Basement Walls	444	5,000 psi	5,000 psi 40% slag, 30% fly ash
Foundation	2,844	6,000 psi	6,000 psi 40% slag, 30% fly ash

a serie de	State and the second	Adda and a second	
Athena Impact Estimator for Buildings		and the second second second	
	Help		
E STO Impact Estimator for Buildings	Modify Project		Modify Project
Example, Boston Reference Example, Boston Proposed Building with 1	Project	Project	Project
🖶 😰 Example, Boston Proposed Ry Ash	Attena Impact Estimator for Buildings	Attena Impact Estimator for Buildings Prot Name Example. Extern Proceed Building with Stag Names Project Locato	Athena Impact Estimator for Buildings
	Hem Kink Dy Buddry Type Commercial → Buddry Life Exectancy Buddry Life Exectancy Wats Years Zots Gross Noor Area (h?) 12000 12000	New Yok Dy. ● Bullong Type Commercial ● Bulding Height (f) 80 ☉ Yeara 205 Units Units Star Pior Pior Pior Pior Pior Pior Pior Units Star Pior Pior Pior Pior Pior Pior Pior Star Pior Pior Pior Pior Pior Pior Star Pior Pior Pior Pior Pior Pior Pior Star Pior Pior Pior Pior Pior Pior Pior Pio	New Yok Chy ● Bulding Type Commercial ● Commercial Units ● Bulding Height (R) ● Bulding Height (R) ●
	Project Number	Synchronize Assembly Display Units	Synchronize Assembly Display Units
	1	Project Number	Project Number
	Project Description (CTRL + Enter for new line)	Project Description (CTRL + Enter for new line)	Project Description (CTRL + Enter for new line)
	Reference Building Impacts Using NRMCA Benchmark Mixes	Proposed Building Impacts Using NRMCA IW EPD Stag Mixes	Proposed Building Impacts Using NRMCA IW EPD Ry Ash and Slag Mixes
	Operating Energy Consumption	Operating Energy Consumption	Operating Energy Consumption

and the second second			
Reference Mixes (benchmark)		Proposed Project Mixes (IW-EPD)	
All Carlos Reference - Monthy All to a Rear all of the Dephase with Swo () () () () () () () () () () () () ()	Torres.htt	Exemple, Brother Proposed Hy John and Slag Maner Modely Search for a Naneal in the Catabase Search String () Material Types - Galact time ist Salact time ist () Act () Act () Act () Act () Act () Cater	Mannel D Mannel Tarro Urit Danaty (Perres In
II ID Name Amount Constraints Waster Factor Net Amount 001 251 Consents Benchmark 1000pus 6.544.00 0.00 6.344.1 252 252 Concerts Benchmark 1000pus 10.474.00 101.074.00 101.074.00 263 252 Concerts Benchmark 000pus 356.00 356.00 356.10		If ID Name Am 301 Mates 5500.007.4480. 003 Mates 5500.007.4480. 004 Mates 5500.007.4480. 005 Mates (195.000.007.4480. 005 Mates (195.000.007.440. 005 Mates (195.000.007.440.	Conduction Water Factor Nat Annual Date 444.00 0.00 445.00 401 2444.00 0.00 425.00 403 4333.00 0.00 4.796.60 403 1067.00 0.00 1.020.00 61 7503.00 0.00 434.00 401 566.00 0.01 434.00 401
Douter for	OK M Gross	e Here Dimen	V 0K K

	Results	
Project	GWP (kg/yd³)	GWP Reduction
Benchmark Mixes	6.14 x 10 ⁶	0
Proposed with Fly Ash and Slag Mixes	3.92 x 10 ⁶	-36%
Establish Carbon Budget	4.30 x 10 ⁶	-30%*
* ~5% tolerance should be achievable		

Proposed Specification Language

Option 1

Supply concrete mixtures such that the <u>total</u> Global Warming Potential (GWP) of all concrete on the project is less than or equal to 4,300,000 kg of CO_2 equivalents as calculated using the Athena Impact Estimator for Buildings Software available at <u>www.athenasmi.org</u>.

Option 2

Supply concrete mixtures such that the total Global Warming Potential (GWP) of all concrete on the project is 30% or more below the GWP of a benchmark building using Benchmark mixes as established by NRMCA and available for download at <u>www.nrmca.org</u>. Submit a summary report of all the concrete mixtures, their quantities and their GWP to demonstrate that the total GWP of the building is 30% or more below the GWP of the benchmark project. Contractor may use the Athena Impact Estimator for Buildings software available at <u>www.athenasmi.org</u> or other similar software with the capability of calculating GWP of different mix designs.

Summary

- Carbon Footprint Reduction
 - Minimize prescriptive limits
 - Performance-based requirements
 - Permit innovative products and processes
- Define project goals for sustainability
- Communicate and partner early with all project stakeholders
 - Consider potential impact on cost

Questions? Specifying Sustainable Concrete

CEU Quiz: https://www.flexiquiz.com/SC/N/Specify

NRMCA

BUILD WITH STRENGTH

Colin Lobo

Brandon Wray bwray@nrmca.org