

Learning Objectives

- Understand the basics of embodied carbon of concrete.
- Evaluate the immediate steps that can be taken to reduce carbon footprint when specifying concrete.
- Prioritize design strategies to get the greatest reductions in carbon footprint using current technologies and design tools.
- Explore how innovative technologies will result in zero carbon concrete in the future.

BUILD WITH STRENGTH

NRMCA

Continuing Education Credit

- NRMCA will e-mail a link to the slides and quiz
- Or visit: <u>https://www.flexiquiz.com/SC/N/Top10</u>
- Complete the quiz
- 10 attempts to achieve 70% passing grade
- Certificate of completion will be available for download and e-mailed to you

BUILD WITH STRENGTH

NRMCA

The Top 10 List

- Communicate Carbon Reduction Goals
- Ensure Good Quality Control and Assurance
- Optimize Concrete Desig
- Specify Innovative Cements
- Specify Supplementary Comentitious Materials

- **Specify Admixtures**
- Don't Limit Ingredients
 - Set Targets for Carbon Footprint
 - Sequester Carbon Dioxide in Concrete
 - Encourage Innovation

Manufacturer Qualifications:

- NRMCA Certified Concrete Production Facility
- NRMCA Concrete
 Technologist Level 2

Ensure Good Quality Control and Assurance

Case Study: 960 W.

- 64-story tower 780 residential units 807,000 square feet

- Developer: Brookfield Properties Design Architect: Marmol Radziner Executive Architect: Large Architecture Structural Engineer: MKA

- Contractor, Webcor
 Concrete Supplier: National Ready Mixed Concrete Company
 Photos: Brookfield Properties

	ASTM	C595	No. 4		
Туре	Description	Notes	Speci	G ;	
Type IL (X)	Portland-Limestone Cement	Where X can be between 5 and 15% limestone	Innov	ıy Vative	
Type IS (X)	Portland-Slag Cement	Where X can be up to 70% slag cement	Ceme	ents	1
Type IP (X)	Portland-Pozzolan Cement	Where X can be up to 40% pozzolan (fly ash is the most common)			
īype IT (AX)(BX)	Ternary Blended Cement	Where X can be up to 70% of pozzolan + limestone + slag, with pozzolan being no more than 40% and limestone no more than 15%			

Concrete Materials:

Chemical Admixtures:

- 1. Air-Entraining Admixture: ASTM C 260/C 260M
- 2. Water-Reducing Admixture ASTM C 494/C 494M Type A
- 3. High-Range Water-Reducing Admixture: ASTM C 494/C 494M Type F or G
- 4. Accelerating Admixture: ASTM C 494/C 494M Type C or E
- 5. Retarding Admixture: ASTM C 494/ C 494M Type B or D
- 6. Hydration Control Admixture: ASTM C 494/C 494M Type B or D
- 7. Specialty Admixtures: ASTM C 494/C 494M Type S

No.7	Class	Location	Nominal Max. Aggregate Size	Exposure Class	F'c, Psi @ Age
Don't Limit	1	Mat Foundation	3″	F0, S1, W0, C0	6,000 at 90 days
Ingredients	2	Basement Walls	1-1/2"	F0, S1, W0, C0	4,000 at 56 days
	3	Shear Walls	3/4"	F0, S0, W0, C0	6,000 at 56 days
	4	Columns Level B2-L6	3/4"	F0, S0, W0, C0	6,000 at 28 days
	5	Columns Level L7-L12	3/4"	F0, S0, W0, C0	4,000 at 28 days
	6	Slabs	3/4"	F0, S0, W0, C0	5,000 at 28 days
	7	Exterior Pavements	3/4"	F3, S1, W0, C0	4,000 at 28 days
	Ę.	And			

Concrete Materials: B. Supply concrete mixtures such that the total Global Warming Potential (GWP) of all concrete on the project is less than or equal to 4,298,000 kg of CO2 equivalents.

Case Study: Oracle Water to Austin, 12

- 550,750 ft² office building
 147,000 ft² ground level parking 646,800 ft² parking garage

- Owner: Oracle
 Architect: STG Design
 Structural Engineer: Walter P Moore
 General Contractor: Ryan Companies
 Concrete Contactor: Keystone
 Concrete
 Concrete Producer: Centex Materials
 Deotor: Casey Durph Photos: Casey Dunn

Impact Measure	Units	Estimated % Reduction from Baseline to Proposed
Acidification Potential	kg SO ₂ eq	-13%
Eutrophication Potential	kg Neq	-3%
Global Warming Potential	kg CO ₂ eq	-12%
Ozone Depletion Potential	CFC-11eq	-11%
Smog Formation Potential	kg O ₃ eq	-12%
Non-Renewable Energy	МЈ	-6%

- Optimized mix designs
- High volume of SCMs

- Test age for drilled piers at 56 days
 Met LEED WBLCA requirement
 At least 10% reduction of GWP (12% in this case)
- At least 10% reduction in at least two other categories

No no Encourage Innovation

The Top 10 List

- Communicate Carbon Reduction Goals
- Ensure Good Quality Control and Assurance
- Optimize Concrete Design
- Specify Innovative Cements
- Specify Supplementary Cementitious Materials

- Specify Admixtures
- Don't Limit Ingredients
- Set Targets for Carbon Footprint
- Sequester Carbon Dioxide in Concrete
- Encourage Innovation

