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engineer's NOTEBOOK
Approximate Structural Analysis
By John A. Dal Pino, S.E., and Larisa Enachi

Engineers routinely need to analyze 
and design indeterminate struc-

tures. Today they would use any one 
of several analytical software packages 
commonly loaded on their computers. 
The programs are so powerful that it 
does not take long to develop the input 
and perform the analysis, even for a 
major building. Sifting through the 
output and finding the desired answers 
might be the greatest effort involved.
However, before the regular use of 

computers (sorry for the history lesson, 
but it was not that long ago), the analy-
sis method of choice was the moment 
distribution method, developed in the 
1930s by Professor Hardy Cross of the 
University of Illinois. Besides being 
a clever analytical concept, it has an 
inherent simplicity and physical logic 
that is easy to grasp. It works like this for analyzing a structure with 
continuous beams with multiple supports: 1) every beam-column joint 
in the structure is assumed to be fixed from rotation and appropriate 
fixed-end bending moments are applied to the joints, and 2) then 
each fixed joint is released sequentially, and the fixed-end moments, 
which at the time of the first joint release are not in equilibrium, are 
distributed to adjacent members. The process of fixing, releasing, and 
re-distributing bending moments is repeated many times until an 
equilibrium is reached or until the engineer decides that the amount 
of undistributed moment is small enough to ignore.
Whether the engineer is working today or in the past, getting the 

right answer, or better yet, a “precise” answer (since there is never a 
“right answer”) to the problem, may involve more effort than the 
engineer wants to exert or has the time or budget to spend. Often, 

an approximate answer to an indeterminate problem is good enough. 
Engineers appreciate that, with ever smaller powerful handheld com-
puters, the “right answer” is never that far away. However, there 
are many times when calculating an approximate answer, while at 
a job site, on the way home from work, or away from the office, is 
something an engineer needs to do because that is all that is really 
needed at the time.
As is discussed later, these approximate analytical techniques are the 

foundations of structural engineering. Of course, today’s engineers can 
consider loading conditions that prior generations knew about but 
lacked the tools (or the computational desire) to evaluate. They can 
also study the post-elastic response of a structure subjected to a suite 
of actual earthquake ground motions, with the computer churning 
away while they take a long lunch.

One-story, one-bay frames, subjected to lateral load.

One-story, two-bay frame, with pinned base, under gravity load.
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When it comes to hiring entry-level engi-
neering staff, many employers look for 
candidates having the very advanced knowl-
edge discussed above. But more importantly, 
they want engineers with solid educational 
backgrounds who have the ability to think 
on their feet and quickly assess and solve 
problems without needing to perform a 
computer analysis, which, as is commonly 
known, is just an approximation. Being able 
to cut through the clutter and get an answer 
that is in the “ballpark” is highly valued by 
employers but hard to teach. To underscore 
the point, how many times has an engineer 
gotten a confusing answer from a computer 
model and then needed to go back to first 
principles to figure out what was wrong and 
how to fix it? Like troubleshooting a finicky 
automobile, an engineer needs to assess what 
is working and what is not using handy and 
trustworthy tools.
This article discusses four different inde-

terminate structures that are encountered regularly in engineering 
practice and that firms also use in their entry-level employee inter-
views, namely:

1)  Lateral analysis of a one-story, one-bay frames.
2)  Gravity analysis of a one-story, two-bay frame  

with a pinned base.
3)  Lateral analysis of a one-story, two-bay frame  

with a fixed base.
4)  Lateral analysis of a multi-bay, multi-story,  

slender high-rise frame.
It would be fair to say that many older, experienced engineers believe 

that solving these issues quickly and approximately is part and parcel 
of being an engineer and would wonder why an interviewer would ask 
an applicant engineer about these situations. But for those not involved 
in hiring, it would be surprising to know how many engineers, many 
educated at our most prestigious universities, have trouble with these 
concepts, even after accounting for some degree of nervousness and 
the pressure of a job interview. Maybe these concepts are not taught 
anymore, or the amount of time allotted to teaching them is too short. 
In either case, this does a disservice to our engineering graduates. Most 
firms have the capacity to train engineers in more advanced analyti-
cal and design techniques. However, if the new hire’s foundation in 
statics and mechanics is lacking or weak, more advanced tasks are 
more difficult to learn.

Analyzing the Indeterminate Structure
Solving statically determinate structures is straightforward because 
basic statics can be employed, namely the summing of forces in 
the x and y directions (for 2-D systems) and the summing of rota-
tional moments (caused by the applied forces) about a point. Solving 
statically indeterminate structures is mainly the task of turning the 
indeterminate structure into a determinate structure. This is done 
by making simplifying assumptions about the location of inflection 
points (also known as points of counter-flexure) in structural elements 
that are bending under load (either due to gravity or lateral loads) 
and judging whether structures subjected to lateral loads resist loads 

primarily from a lateral shearing action or primarily from a lateral 
bending response. Once this is done, the rest is just math.

Lateral Analysis of One-Story, One-Bay Frames
There are three variations of this simple structure: a) a pinned base 
with beam and columns of approximately equal stiffness, b) a fixed 
base with beam and columns of approximately equal stiffness, 
and c) a fixed base with a rigid beam and two flexible columns 
of approximately equal stiffness. Assume there is a lateral load 
applied at the beam level, there is no gravity load, the members 
have infinite axial stiffness, the shear in the columns is equal, and 
the members have no mass.
For all three conditions, the first step is to identify the counter-flexure 

points in the beams and columns. Start this process by drawing the 
deflected shape for each structure. Going back to the job interview 
process, many applicants have difficulty with the rotation of the beam-
column joint and the curvatures of the beam and column at the joint. 
Rather than applying the forces to determine the moment and rota-
tion, they guess and get it all backward. However once the curvatures 
are drawn correctly, the counter-flexure points can be located. This 
creates a determinate structure, and the shears and bending moments 
in the beams and columns can then be determined. The pinned-base 
structure produces the largest bending loads because the base (say the 
ground) helps the least. The fixed-base, rigid-beam structure has equal 
top and bottom bending moments and the least column bending. 
The fixed-base, flexible-beam structure falls somewhere in the middle. 
The inflection points in the columns are near (or slightly above) mid-
height, creating the potential for slightly higher bending moments 
in the columns than that for the fixed-fixed structure, depending on 
the relative stiffnesses of the beams and columns. Since the analysis 
is approximate, it is also acceptable to assume the inflection point 
is at mid-height.
One might wonder – why spend so much time on such a simple 

structure? The answer is that these are the potential conditions for the 
first story columns in many kinds of buildings: a structure without 
a basement or any base rigidity, a structure with a basement and 
“normal” second-floor framing, and a structure with a basement and 

One-story, two-bay frame, with a fixed base, subjected to lateral load.
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very rigid beams at the second floor. The required sizes of the columns, 
and the beams but to a lesser extent, can vary greatly.

Gravity Analysis of a One-Story, Two-Bay Frame with a 
Pinned Base
The structure is a one-story, two-bay frame with unequal beam spans. 
Assume there is gravity load applied at the beam level, there is no 
lateral load, the members have infinite axial stiffnesses, and the mem-
bers have no mass.
It would take a long time to analyze this structure with hand calculations, 

and it would take a fair amount of time (allowing for a few modeling 
errors), even with a computer. As with a one-bay frame, the first step is 
to identify the counter-flexure points in the beams. Start this process by 
drawing the deflected shape of the beams. Once the beam curvatures are 
drawn, the counter-flexure points can be located. The beam design aids 
in the American Society of Steel Construction’s (AISC) Steel Construction 
Manual show the inflection points for fixed-fixed beams. The inflection 
points near the center column are more similar to the fixed-fixed condi-
tion. Since the exterior beam-column joints rotate to some extent, the 
inflection points are closer to the columns. The columns do not have 
inflection points due to the pinned base condition. One should exercise 
some judgment here, remembering this is an approximate analysis. Adding 
the inflection points creates a determinate structure, and the shears and 
bending moments in the beams and the shears, bending moments, and 
axial loads in the columns can then be determined.

Lateral Analysis of a One-Story, Two-Bay Frame with a 
Fixed Base
A variation of the previous structure is a one-story, two-bay frame 
with equal beam spans with only lateral loads due to earthquake 
loads at the floor level. As with the one-bay frame, assume there is 
no gravity load applied at the beam level, the members have infinite 
axial stiffnesses, and the members have no mass.
The interior beam-column joint is roughly twice as stiff rotationally 

as the exterior joints (two beams compared to one beam), so assume 
that the interior column resists twice as much shear as the exterior 
columns. This is the basic assumption in the portal frame method.
As with the other structures discussed above, the next step is to identify 

the counter-flexure points in the beams and columns. Start this process 

by drawing the deflected shape of the structure using the same logic as 
for the one-bay frames. Assume the inflection points are at mid-length 
of the beams and mid-height of the columns. This sets the counter-
flexure points. This creates a determinate structure, and the shears and 
bending moments in the beams and the shears, bending moments, and 
axial loads in the columns can then be determined. A fixed-base struc-
ture replicates a building with a basement where the columns extend 
downward to the basement floor level or a building without a basement 
but with a rigid grade beam system near the surface grade intended to 
provide column base fixity. A pinned base would replicate a building 
without a basement or one with a minimal flexible grade beam system.

Lateral Analysis of a Multi-Bay, Multi-Story,  
Slender High-Rise Frame
For the last structure, a tall, slender building of indeterminate height is 
examined. The height does not really matter so long as the building is 
considerably taller than it is wide. The predominant response to lateral 
loading is flexural bending of the tower as opposed to shearing action.
Assume lateral loads due to earthquakes are applied at each floor 

level in a triangular shape with the centroid at ⅔ of the height, H; 
there is no gravity load applied at the beam levels; the beams have 
infinite axial rigidity; the columns have equal axial stiffnesses; and, 
the members have no mass.
Rather than identifying the counter-flexure points in the beams 

and columns as with the other structures whose response is predomi-
nately a shearing action, assume the tower bends like a cantilevered 
pole extending from the ground. Due to the lateral loads only, the 
columns on one face of the tower are in tension, and the columns 
on the other face are in compression. For the example building with 
three columns, sum the moments about the center column (the 
neutral axis) and determine the axial column’s loads. This simplifica-
tion is the essence of the cantilever method. Statics dictate that the 
center column gets no axial load from the lateral load condition. 
Suppose the structure has more columns, assuming that plane sec-
tions remain plane in bending. In that case, the columns will sustain 
axial loads proportional to their distance from the neutral axis at 
the centerline of the building.
If the inflection points are assumed at the mid-lengths of the beams 

and mid-heights of the columns, the beam and column bending 
moments and shears can then be determined. Tall buildings have 
large column axial loads; it would be fair to simply add those to the 
column’s loads already determined based on tributary area.

Conclusion
The ability to determine approximate answers to complicated problems 
is handy in the real world of engineering. Engineers will be amazed 
at how much respect they earn when they can provide a contractor 
with a quick answer in the field without having to go back to the 
office to figure it out, or when they can, in just a few minutes, help 
another engineer troubleshoot a computer model that has 
been frustrating them for several hours. The basics never go 
out of style and are reliable tools if learned early and well.■

Multi-story, multi-bay, slender high-rise frame.
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