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emerging TECHNOLOGY
Machine Learning Applications
Hope, Hype, or Hindrance for  
Structural Engineering
By Henry V. Burton, S.E., Ph.D., and Michael Mieler, Ph.D.

Machine learning (ML) is a branch of artifi-
cial intelligence (AI) that uses algorithms to 

find patterns in data and make predictions about 
the future, essentially enabling computers to learn 
without being programmed explicitly beforehand. 
While AI and ML have been active fields of study 
and research since the 1950s, they have exploded 
in popularity over the past decade. This explosion 
is thanks to deep learning (DL), a type of ML that 
leverages big data and neural networks to tackle a diverse range of 
problems, from image recognition and fraud detection to customer 
support chatbots and language translation. Figure 1 shows the rela-
tionship between AI, ML, and DL, while Figure 2 shows the three 
major types of ML.
The recent success of ML applications in areas such as bioengineering, 

medicine, and advertising has been highly visible, creating a domino 
effect where others have begun to ask whether their respective fields 
of practice, including structural engineering, can be transformed or 
“revolutionized” by ML. Structural engineering researchers began to 
explore ML applications as early as the late 1980s. However, it is only 
within the last five years that the community of structural engineer-
ing researchers and practitioners has begun to seriously explore ways 
in which ML can improve the efficiency and/or accuracy of specific 
tasks or solve previously intractable problems. As with other fields, 
some have expressed legitimate concern that the potential benefits of 
ML to structural engineering are being overhyped and, in the worst 
case, exploited for marketing purposes.
This article identifies and reviews three areas of current and potential 

ML applications in structural engineering and discusses challenges 
and opportunities associated with each. The authors conclude with a 
general discussion of some of the challenges that must be addressed if 
ML is to be effectively used in structural engineering practice.

Improving Empirical Models
There is a long history of using statistical models based on experi-
mental or field data to predict various types of parameters used in 

structural design, response analysis, and performance assessment. 
These types of models have been shown to be especially useful 
when physics-based models, which are often simplified for practi-
cal purposes, are unable to capture known physical mechanisms. 
For example, many of the analytical relationships provided in the 
ACI-318 Building Code Requirements for Structural Concrete are 
either fully empirical (i.e., based on regression using experimental 
data) or a hybrid (i.e., engineering equations with empirically 
derived parameters). Therefore, it is worthwhile to examine whether 
the predictive performance of these empirical relationships can 
be improved by using ML models and what, if any, tradeoffs are 
included in the latter. 
For illustration purposes, examine Equation 18.10.6.2b of ACI-318-

19, which is used to estimate the drift capacity (i.e., drift associated 
with a 20% peak strength loss) of special structural walls. The equation 
was developed by performing linear regression on a dataset of 164 
physical experiments (Abdullah and Wallace, 2019) using the ratio of 
wall neutral axis depth-to-compression zone width, the ratio of wall 
length-to-compression zone width, wall shear stress ratio, and the 
configuration of the boundary zone reinforcement as the predictor (or 
independent) variables. Using the same dataset and predictors, a drift 
capacity model was developed using the Extreme Gradient Boosting 
(XGBoost) machine learning algorithm. In brief, XGBoost is a type 
of “tree-based” algorithm that works by repeatedly subdividing the 
dataset based on a set of criteria defined to maximize the accuracy of 
the resulting predictive model. More details of how this algorithm 
works can be found in Huang and Burton (2019). 
Figure 3 (page 18) shows a plot of the observed (from the experi-

mental data) versus predicted (by the model) drift 
capacity values for the linear regression (Figure 
3a) and XGBoost (Figure 3b) models. The solid 
diagonal lines in the two plots represent the loca-
tions where the observed and predicted values 
are the same. Compared to the linear model, the 
XGBoost data points are more closely aligned 
along the diagonal, indicating superior predictive 
performance. A quantitative comparison of the 
two models can be obtained by computing the 
DX% value, which is the percentage of data points 

Figure 1. Overview of the relationship between AI, ML, and DL.

Figure 2. Three major types of ML.
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with errors (the difference between observed and predicted) that are 
less than some predefined percentage (X ) of the observed values. 
The D10% value for the XGBoost model is 76%, which indicates 
that 76% of the errors in the predictions are within 10% of the 
observed values. In contrast, the D10% value for the linear model is 
approximately 53%, which further indicates the improved accuracy 
provided by the XGBoost algorithm.
A defining feature of tree-based ML algorithms (including XGBoost) 

is that the resulting model cannot be expressed analytically. This 
creates obvious challenges with interpreting or interrogating the 
model and even implementing it in a building code or standard. 
Therefore, one has to weigh the ben-
efit of increased accuracy with the 
increased complexity of the XGBoost 
model. The latter can be addressed by 
developing a software application that 
implements the relevant ML model 
and uses visualizations (e.g., plots) to 
explain the relationship between the 
input and output variables. 
The example presented in this section 

represents just one of several possi-
bilities where the accuracy of existing 
empirical relationships for predicting 
structural response, capacity, or per-
formance can be improved using ML 
models. However, as noted earlier, 
this often comes at a cost, which is 
frequently associated with the complex-
ity of ML models. Other areas where 
ML algorithms are being examined as 
potential replacements for commonly 
used empirical models include com-
ponent failure model classification, 
natural hazard damage assessment 
(e.g., predicting earthquake or flood 
damage to buildings), and structural 
health monitoring.

Surrogate Models 
ML models could also potentially be 
used to reduce the time and effort 
associated with some computationally 
expensive structural analysis tasks. For 
example, performance-based design 
(PBD) often necessitates detailed non-
linear (geometric and material) analyses 
to understand structures’ response to 
extreme loading. However, despite sig-
nificant research advancements, PBD 
has not been widely adopted in practice. 
Even the 2nd generation performance-
based earthquake engineering (PBEE) 
framework, which is considered by 
many to be the template for PBD, has 
not seen widespread adoption. This is 
partly because the state of structural 
engineering practice is such that most 
designers rely on linear analysis models 

to estimate response demands. The use of nonlinear response his-
tory analysis as part of the design process is generally expensive, 
both computationally and in terms of labor, which often leads to 
unjustifiable design fees. 
One strategy for reducing the computational expense and labor of 

nonlinear analyses is to use surrogate models to estimate response 
demands. Additional details on the procedure for developing sur-
rogate models can be found in Moradi et al. 2018.
The process of creating and implementing surrogate models for 

structural response estimation is not without its challenges. First, 
the dataset used to train the ML model is generated using explicit 
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response analyses, which will be com-
putationally expensive. However, the 
increased availability of computa-
tional and storage resources within 
the research community is likely to 
overcome this challenge. There are 
also limitations in terms of the lack 
of generalizability of surrogate models. 
ML models are generally good at inter-
polation (making predictions within 
the bounds of the dataset). Still, they 
do not perform as well at extrapola-
tion (making predictions outside the 
bounds of the dataset). Therefore, the 
application limits of surrogate models 
should be carefully communicated to 
the users. Lastly, the challenges with 
interpretation discussed previously are 
also relevant to surrogate models.
In addition to potential applications 

in PBD, surrogate models can be 
used in regional assessments of natu-
ral hazard impacts. More specifically, 
the earthquake engineering research 
community has begun to explore the 
use of surrogate models as part of the 
workflow for regional seismic risk 
assessment utilizing the FEMA P-58 
PBEE procedure. At this scale, the 
inventory size is typically on the order 
of tens or hundreds of thousands of 
buildings, such that explicit nonlinear 
response simulation becomes unfeasible. The Seismic Performance 
Prediction Program (SP3) (www.hbrisk.com), a commercial online 
tool that is used for PBEE assessments, has developed a “structural 
response prediction engine” that essentially uses the surrogate model 
concept to enable users to bypass explicit nonlinear response his-
tory analyses. However, the details of the adopted statistical or ML 
methods have not been made publicly available. 

Information Extraction 
ML models for automating information extraction from images, 
video, and written text have found widespread applications in several 
fields, including engineering, medicine, and different branches of 
science. A reasonable argument can be made that, among the vari-
ous ML technologies, those that automate information extraction 
from different media sources hold the greatest promise in structural 
engineering applications. This is partially supported by the rapid 
growth in the popularity of this area of ML-related structural engi-
neering research within the past three years. Additionally, there is 
anecdotal evidence that, unlike the previously discussed areas of 
potential application, these information extraction technologies 
have started to make their way into practice. 
Computer vision (CV) is a subcategory of AI that gives com-

puters the ability to extract meaningful information from images 
and videos. DL algorithms are essential to the functionality of 
modern CV techniques. For almost a decade, the research com-
munity has been exploring the use of CV techniques to classify 
structural system and component types, detect defects or damage 

in structures (e.g., cracks in con-
crete, loosened bolts), automate 
the development of as-built models 
using images,  and identify seis-
mic deficiencies. Through informal 
inquiries, the authors also found 
that structural engineering prac-
titioners are using CV to detect 
corrosion in offshore structures, 
monitor the structural integrity of 
bridges during construction, and 
identify the presence of soft stories 
in buildings.
Natural language processing 

(NLP) is a branch of AI focused on 
empowering computers to extract 
useful information from writ-
ten text. NLP technologies have 
found widespread applications in 
advertising, litigation tasks, and 
medicine. Despite being one of the 
least explored ML technologies in 
structural engineering, researchers 
have begun to investigate the use of 
NLP to rapidly assess the damage to 
buildings caused by natural hazard 
events using text generated by field 
inspections. Additionally, practitio-
ners have begun to explore NLP’s 
use to catalog building information 
by automating text extraction from 
structural drawings.

Challenges
For ML applications to become an effective part of structural engineer-
ing practice, several challenges must be addressed. The first involves 
sufficient access to diverse and high-quality data. Most, if not all, 
of the previously described structural engineering applications have 
utilized relatively small, homogeneous datasets, which implies that 
the resulting models cannot be generalized. The development of 
genuinely representative datasets requires that open access repositories 
with rigorous quality control be instituted. The research community 
has begun to take the necessary steps towards achieving this vision 
by establishing platforms such as DesignSafe, Structural ImageNet, 
and the DataCenterHub (http://datacenterhub.org).
The second challenge involves the “black box” nature of some ML 

algorithms, giving rise to interpretation and quality control issues. 
However, it is important to distinguish between those algorithms 
that are truly black boxes (e.g., deep neural networks whose predic-
tions often cannot be explained by ML experts) and those that are 
somewhat interpretable (e.g., XGBoost) but merely unfamiliar to 
the structural engineering community. It is reasonable to suggest 
that ML not be used by individuals who are completely unfamiliar 
with the algorithms. This is especially true for structural design and 
analysis tasks where safety and reliability are a primary concern. In 
the long term, the inclusion of basic data science courses in university 
civil/structural engineering curricula could increase the number of 
structural engineering practitioners that have a working knowledge 
of some commonly used ML algorithms. 

Figures 3a and 3b. Observed versus predicted drift 
capacity values; a) linear regression, b) XG Boost model.
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The third challenge, which is a side effect of its current popularity, 
is that AI is sometimes exalted as a “cure-all” for problems across dif-
ferent domains. As a marketing tool, there is a tendency to lead with 
the predictive accuracy of various models. A hypothetical example 
of such a claim is that “our model can predict earthquake damage to 
buildings with 95% accuracy.” Important nuances such as the differ-
ences between the model development and application context and 
uncertainties in the prediction outcomes are often lost in such declara-
tions. It is therefore critical that developers of structural engineering 
ML technologies communicate openly and honestly with users about 
limitations and potential pitfalls. This is especially important when the 
application context has implications for 
the safety of populations on a broad scale.
The fourth challenge centers on deter-

mining whether ML is suitable for a 
particular structural engineering task. 
First and foremost, it is important to 
examine whether there are tangible ben-
efits to its application (e.g., increased 
productivity or improved prediction 
accuracy relative to existing models). In 
those cases where there are actual ben-
efits, potential users also need to weigh 
them against tradeoffs, such as reduced 
interpretability. Another important con-
sideration is whether the dataset used to 
train the ML model is within the domain 
of the potential application. As noted 
earlier, many ML models are good at 
interpolation but less capable of extrap-
olating beyond the training dataset, 
which brings into question their ability 
to generalize. Lastly, the high predic-
tive accuracy of some ML algorithms 
(e.g., deep learning) within the context 
of training and testing is such that the 
uncertainty associated with their pre-
dictions on “unseen” datasets is often 
overlooked. The centrality of the role 
that structural engineers play in ensuring 
the safety and functionality of the built 
environment is such that uncertainty 
in design and performance outcomes 
cannot be ignored.
In summary, the authors’ opinion is that 

there are some promising areas where 
ML can provide meaningful benefits 
to the practice of structural engineer-
ing. However, effective implementation 
requires that the community of practi-
tioners and researchers come together 
to address some of the challenges that 
have been identified in this article. In 
the meantime, both researchers and 
practitioners should proceed with “cau-
tious exploration” of ML applications 
in structural engineering while being 
mindful of the profession’s 
commitment to the public’s 
safety and well-being.■

References are included in the  
PDF version of the article at STRUCTUREmag.org.
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