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Nearly every day in our careers as 
structural engineers, we consider 
the following equations:

Mn = Asfy(d-a/2), Mn = Fy Zx

Readers will no doubt recognize these as the 
nominal flexural strengths utilized in beam 
designs for reinforced concrete and steel, also 
known as (among other things) the flexural 
limit state. While there are variations reflecting 
unbraced lengths, the presence of compression 
reinforcement, axial loads and other consider-
ations, these are the fundamental relationships. 
What exactly does this mean?
Structural engineers understand that the 

capacities represented by these equations do 
not correspond to the loads that we actually 
expect the members to see during a typical ser-
vice condition. Rather, these are the approximate 
magnitudes of loads that the members would 
experience in the unlikely event that they are 
pressed toward ultimate failure. This will hope-
fully never occur for members that are part of 
the ‘gravity’ system. Likewise, this will hope-
fully not occur for a large but rare transient 
event in members that are part of the ‘lateral’ 
system. Either way, the fundamental objective 
is to ensure that designs have φMn greater than 
Mu, the maximum flexural factored load effect.
Now consider the ‘middle ground’ in this 

scenario – the flexural behavior that occurs 
between zero load and a condition where Mu 
equals Mn. Doing so offers a glimpse of basic 
nonlinear behavior and the formation of flex-
ural mechanisms that hopefully reflect stable 
and ductile performance.
For the concrete beam scenario, at a load 

equal to Mn it is assumed that the rein-
forcement has yielded in tension following 
the idealized elastic-to-plastic relationship, 
with a constant stress equal to yield stress 
(fy) with a strain somewhere beyond the 
yield strain of approximately 0.00207 (for 
Grade 60 bars). It is also assumed that the 
concrete acting in compression has reached 
a strain of 0.003 and that at this point, it 
is theoretically being crushed at its extreme 
compressive surface. To understand what 
has happened in the beam while reach-
ing this point requires developing a series 
of calculations reflecting various levels of 
reinforcement strain, from zero all the way 

up to the net tensile strain (εt) which occurs 
at a theoretical load of Mn.
For each one of these calculations, it is pos-

sible to develop resultant forces based on 
relative strains in the tension steel and the 
concrete compression zone, and a moment-
couple relationship based on the distance 
between the resultant forces. This relationship 
is relatively simple, since we know from statics 
that the resultants of tension and compression 
must always be equal in magnitude and oppo-
site in direction. While many theories have led 
to the development of models reflecting the 
distribution of stress in the concrete compres-
sion zone, assuming a uniform compression 
zone as prescribed by ACI 318 is valid and 
greatly simplifies the calculation, enabling the 
a/2 portion of the equation previously shown.
For each series of calculations, the curvature 

value is simply taken as the strain in flexural 
reinforcement divided by its distance from the 
theoretical neutral axis. Plotting the values of 
Mn and curvature yields a load-deformation 
(curvature) relationship, an example of which 
is shown in the Figure.
Among the interesting things observable in 

this figure is that nominal moment capacity 
is nearly reached at the point where the ten-
sile reinforcement first yields – long before the 
member reaches is ultimate capable curvature 
at Mn. What does this mean in a practical sense? 
Observe that the nominal flexural strength is 
approximately 240 kip-ft and that this particular 
member reached this capacity at a curvature just 
beyond 0.0002/in. However, the member was 
able to sustain this load to a curvature nearly five 
times this value, thereby demonstrating the duc-
tile behavior toward which the codes are geared. 
This exercise demonstrates that failure of this 
member would be preceded by deformations 

likely to present a serviceability issue, thus giving 
occupants warning of trouble.
As an interesting exercise, consider increas-

ing the area of reinforcement to the balanced 
or over-reinforced condition. The results will 
demonstrate a smaller ratio of maximum capa-
ble curvature vs. yield curvature, which grows 
ever smaller as the amount of reinforcement 
increases. This demonstrates the pitfall of simply 
adding reinforcement to improve strength.
It is also worthwhile to consider seismic 

response. The Figure demonstrates the poten-
tial for favorable hysteretic behavior as the area 
under the curve is proportional to the energy 
release occurring through each cycle of flexural 
load and rotation. If the reinforced concrete 
is detailed correctly, this is a favorable, stable 
and controlled method for dissipating energy 
during an earthquake, thereby preventing it 
from becoming manifest elsewhere. The same 
holds true for steel beams, provided that they 
are appropriately sized and detailed to promote 
fundamental material nonlinearity, as opposed 
to other forms of ‘macro’ nonlinearity such as 
global or local buckling.
Observations of the projected theoretical 

behavior of mechanisms such as this are worth-
while. They offer a glimpse into the basis for 
code provisions that we often take for granted.▪
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Moment vs. curvature relationship for reinforced concrete beam.
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