Steel Design for the 21st Century
By Christopher M. Hewitt

The 1980s were pretty innovative years. They brought us wonderful technical advances, like cell phones, Microsoft DOS, and AISC’s familiar ASD Manual. With time, each of these innovations has seen substantial improvement, embracing the technical advances of the new century — none of us continue to carry around the clunky car phones of the 80s, but pocket sized phones are now a way of life. Bill Gates’ Microsoft has evolved into an intricate and expanded Windows operating system for the business world.

In that same time, the technology surrounding steel design has continued to advance. With all of the research and innovation that has surfaced in the last 16 years, it seems appropriate for steel design to evolve from a world defined by green computer screens, four-function calculators, Beta recorders and Marty McFly. The 13th Edition AISC Steel Construction Manual gives ASD and LRFD designers alike a way to realize the advances in steel design technology in the 21st century.

One Manual to Rule Them All

The new AISC Steel Construction Manual, 13th edition, brings ASD and LRFD together in a familiar context. The structure of the book is largely the same as it has been for many years — all of the classic design tables for member and connection design have been carried forward. Tabulated design values for ASD and LRFD are presented side-by-side.

Much like the new AISC Specification, the Steel Construction Manual includes coverage for all member types, including hollow structural sections and single angles, in a single volume.

Defined By Color

Color plays an important role in this edition of the Manual. Tabulated values applicable only to design by ASD are presented in green shading, and tabulated values applicable only to design by LRFD are presented in blue print. Values that are independent of design method are presented in black print.

Perhaps the most elegant realization of this approach can be seen in the unbraced beam design charts of the Manual. Because the performance of a steel beam is the same regardless of the design method used by the structural engineer, only one set of curves is required for structures designed by ASD or LRFD. The strength level corresponding to each point of the curve need only change to reflect whether the loads were calculated using ASD load combinations or LRFD load combinations. As seen in Figure 1 on page 29, this is accomplished by providing an ASD scale and an LRFD scale for the vertical axis. All other tables similarly integrate ASD and LRFD values for convenient and consistent usage.

Leading By Example

The AISC Committee on Manuals and Textbooks began the effort of overhauling the Manual three years ago. From the onset of the project, the committee sought to return the text to its origins as a true handbook for practicing structural engineers. In line with this approach, users of the Manual will notice that there are no design examples included in the printed version. However, even more design examples than were available in the past are included on a CD companion titled AISC Design Examples. The companion text was developed by the AISC Committee on Manuals and Textbooks with consultant Charles Page, P.E. of Page McNaghten Associates in the Kansas City, Missouri area. AISC Design Examples provides hundreds of design examples on the application of the 2005 AISC Specification for Structural Steel Buildings, and the design aids of the AISC Steel Construction Manual, with an easy to follow, side-by-side presentation of design equations.

More Design Power

New design aids in this manual include tabulated values for the critical stress of compression members, design curves for the available stress of plate girders, and simplified design procedures for considering second-order effects on a structure.

Many improvements realized in the development of the LRFD design manuals can now be used for design by ASD, such as improved design methods for composite members, design aids for members subjected to combined bending and axial forces, eccentric load coefficients for loads applied at various angles, and tension member design aids. But even these design aids have been im-
proved — tables for the design of members subjected to combined axial load and bending now can be applied to the case of combined tensile and bending forces, and coefficients have been provided for calculating the strength of weld groups when they are loaded concentrically.

Some connection design procedures have been modified in this edition of the Manual. Design procedures for prying action now make use of the tensile strength rather than the yield strength, to better align the design provisions with the tested performance of bolted parts subjected to prying action. Procedures for the design of connection elements subject to bending have been modified to use the plastic section modulus in the calculation of bending strength, rather than the elastic section modulus; the exception to this being the design of a coped beam end for flexure, which is still based upon the elastic section modulus.

Simple shear connections now include a revised design procedure for conventional single-plate shear connections, a new design procedure for the design of extended single-plate shear connections, and the most current procedures for the design of end-plate moment connections.

But, perhaps the most significant contribution of this Manual is that it recognizes that the strength of steel is constant, and eliminates the annoying differences between design methods, allowing the designer to scrutinize the merits of steel designs, rather than the merits of design methods. By returning to a single design approach, a single Manual, and a single method for determining the strength of steel structures, structural engineers can better pursue innovations and improvements in the art and practice of design.*

---

*Lease applicants must meet credit qualifications. Autodesk financing cannot be combined with any other Autodesk promotional or special price offer. USA and Canada only. Federal government and student customers are not eligible for this financing offer. Autodesk is a registered trademark of Autodesk, Inc. in the USA and/or other countries. All other brand names, product names, or trademarks belong to their respective holders. Autodesk reserves the right to alter product offerings and specifications at any time without notice, and is not responsible for typographical or graphical errors that may appear in this ad. ©2005 Autodesk, Inc. All rights reserved.