Multiple-Bolt Wood Connection Design Topics
By Donald A. Bender, P.E., Ph.D. and Frank E. Woeste, P.E., Ph.D.

Design of single-bolt wood connections is relatively straightforward by using the provisions of Chapters 10 and 11 of the ANSI/AF&PA NDS-2005 National Design Specification® for Wood Construction (NDS). Design of multiple-bolt wood connections is also covered by the NDS. It contains numerous design considerations specific to multiple bolt connections such as spacing in a row, spacing between rows, group action factor, localized stresses in members, and so on. Lateral design values for single bolts are tabulated for various species and connection configurations (NDS Tables 11A through 11I); however, tabulated lateral design values must be adjusted for a specific application based on provisions of the NDS. Before designing multiple-bolt wood connections, careful study of the latest NDS is recommended. The objective of this article is to alert design professionals to two multiple-bolt connection design issues that deserve special attention and explanation: local member stresses and structural glued-laminated timber horizontal shear values for connection design.

Local Stresses in Connections
The NDS requires that the design professional check for “local stresses” in connections with multiple fasteners using “principles of engineering mechanics,” but it does not stipulate the engineering method to be used. Referring to NDS on Multiple Fasteners, local stresses are addressed in Section 11.6.3:

“11.6.3 Local Stresses in Connections
Local stresses in connections using multiple fasteners shall be evaluated in accordance with principles of engineering mechanics (See 10.1.2).”

Referring to NDS Section 10.1.2:

“… Local stresses in connections using multiple fasteners shall be checked in accordance with principles of engineering mechanics. One method for determining these stresses is provided in Appendix E.”

Appendix E of the NDS is labeled as follows: “Appendix E (Non-mandatory) Local Stresses in Fastener Groups.”

Appendix E addresses three potential failure modes: net section tension capacity, row tear-out capacity, and group tear-out capacity. In summary, since NDS is the referenced design standard for wood construction, it is a model code requirement to check local stresses in multiple-bolt connections. The NDS does not limit the design professional on how the check is to be made; however, the NDS offers a “Non-mandatory” appendix as one option.

Net Section Tension Capacity
NDS Section E.2 gives an equation for checking net section capacity. An example of a net section failure is depicted in Figure 1.

Row Tear-Out Capacity
NDS Section E.3 gives equations for checking row tear-out capacity. An example of a row tear-out failure is depicted in Figure 2, showing two wood shear failure planes on each side of the bolt rows.

Group Tear-Out Capacity
NDS Section E.4 addresses group tear-out capacity. Figure 3 demonstrates a group tear-out failure mode. Note how an entire “plug” of wood fiber is removed by shear failures on the left and right row of bolts, coupled with a net section tension failure (at any angle) between bolt row at the top of the specimen.
Structural Glued-Laminated Timber Horizontal Shear Values

The allowable horizontal shear design value, with all appropriate adjustments, is used for row tear-out and group tear-out checks previously described. For dimension lumber and timbers, reference horizontal shear design values are tabulated in NDS Supplement Tables 4A, 4B, 4C, and 4D; and adjustment factors are summarized in Table 4.3.1. Similarly, for structural glued-laminated timber (glulam), reference shear design values are contained in Tables 5A, 5B, 5C, and 5D; and adjustment factors are summarized in Table 5.3.1. However, an important additional adjustment is required for the allowable horizontal shear value used in connection design for glulam made from softwood lumber.

Horizontal shear design values for glulam made from softwood lumber have increased in recent years as a result of extensive beam tests. Horizontal shear reference design values are tabulated in NDS Supplement Tables 5A and 5B for the X-X and Y-Y axes. It is important to note that these values are for use in designing prismatic glulam beams. Footnote 4 of Table 5A and Footnote 3 of Tables 5A Expanded and 5B stipulate that the tabulated shear design reference value shall be decreased by multiplying by a factor of 0.72 for connection design (and for non-prismatic members, notched members and members subject to impact or cyclic loads).

For example, the allowable shear design value for checking localized stresses in a multiple bolt connection in a glulam timber would be:

\[F_{v'} = F_v \times 0.72 \times \text{(other applicable factors from NDS Table 5.3.1)} \]

Assuming glulam Combination 3 Douglas fir and unity for Table 5.3.1 adjustment factors,

\[F_{v'} = 265 \text{ psi} \times 0.72 = 191 \text{ psi} \]

Check Net Section Tension Capacity per NDS App. E.2

Allowable tension stress, adjusted by applicable factors from NDS E of the NDS. Assumptions and requirements for the connection design are:

- Double shear splice connection with %4-inch ASTM A36 steel side plates (8 inches wide).
- Main member is 2x10 1800F-1.8E Douglas Fir-Larch (DFL).
- Load combination is Dead + Snow.
- Lumber is “dry” at installation and dry in-service.
- Required connection capacity is 11,000 lbs tension.

As a starting point, try three rows of %-inch diameter bolts and four bolts per row. Edge spacing is 2.125 inches, end distance is 5 inches, row spacing is 2.5 inches, and fastener spacing is 3 inches as depicted in Figure 4.

From NDS Supplement Table 4C, the referenced design values of 1800F-1.8E DFL member properties are:

\[F_t = 1,200 \text{ psi} \]
\[E = 1,800,000 \text{ psi} \]

Check Required Number of Bolts

From NDS Table 11G, the single-bolt capacity when the member is loaded parallel to grain is:

\[Z_t = 1,310 \text{ lb} \]

The referenced single-bolt design value is adjusted according to NDS Table 10.3.1:

\[Z_{t'} = Z_t \times C_D \times C_g \times C_L \]

C_D = load duration factor from NDS Appendix B = 1.15 (for Dead + Snow combination).
C_g = geometry factor from NDS Section 11.5.1 = 1.0 since,
- bolt spacing, s = 3 inches, exceeds 4D minimum, per NDS Table 11.5.1C.
- end distance, s = 5 inches, exceeds 7D minimum, per NDS Table 11.5.1B.
C_L = group action factor, calculated according to NDS 10.3.6 = 0.96.

The adjusted allowable single-bolt value is:

\[Z' = Z_{t'} \times C_D \times C_g \times C_L = 1,310 \text{ lb} \times 1.15 \times 0.956 \times 1 = 1,440 \text{ lbs} \]

To determine the capacity of 12 bolts, simply multiply by 12 as specified in NDS 10.2.2:

Total bolt capacity = 12 bolts * 1,440 lbs/bolt = 17,280 lbs

Total bolt capacity > 11,000 lbs, thus with respect to bolt capacity alone, 12 bolts at %-inch diameter are adequate.

Check Net Section Tension Capacity per NDS App. E.2

Allowable tension stress, adjusted by applicable factors from NDS Table 4.3.1 is:

\[F_{v'} = F_v (C_{\text{CS}}) = 1,200 \times 1.15 = 1,380 \text{ psi} \]

continued on next page
Net tension capacity, allowing for 1/8-inch oversized bolt holes (per NDS 11.1.2.2), is given by:

\[T_{\text{net}} = (1,380 \, \text{psi}) \times [9.25 \, \text{in.} - 3(5/8 + 1/16 \, \text{in.})] = 14,878 \, \text{lbs} \]
\[T_{\text{net}} > 11,000 \, \text{lbs}, \text{net section capacity is adequate.} \]

Check row tear-out capacity per NDS App. E.3

Allowable tear-out capacity of row of fasteners can be calculated as:

\[Z'_{RT} = n_i F'_{v'} A_{\text{critical}} \]

where:

- \(Z'_{RT} \) = allowable row tear-out capacity of row i,
- \(F'_{v'} \) = allowable shear design value parallel-to-grain,
- \(A_{\text{critical}} \) = minimum shear area of any fastener in row i, and
- \(n_i \) = number of fasteners in row i.

Note: The above equation is divided by 2 to account for uneven shear distribution along the row of bolts.

Assuming one shear line on each side of bolts in a row

\[Z'_{RT} = \frac{F'_{v'} t}{2} [n_i s_{\text{critical}}] \text{ (2 shear lines)} = n_i F'_{v'} t_{\text{critical}} \]

where:

- \(s_{\text{critical}} \) = minimum fastener spacing in row i (or end distance if it is less than fastener spacing)
- \(t \) = thickness of member

Allowable shear stress, adjusted by applicable factors from NDS Table 4.3.1 is:

\[F'_{v'} = F_v (C_{\text{Ed}}) = 180 \times 1.15 = 207 \, \text{psi} \]

\[Z'_{RT} = n_i F'_{v'} t_{\text{critical}} = (4 \, \text{bolts}) (207 \, \text{psi}) (1.5 \, \text{in.}) = 3,726 \, \text{lbs} \]

Total row tear-out capacity of multiple rows of fasteners is:

\[Z'_{RT} = \sum_{i=1}^{n_{\text{rows}}} Z'_{RT} = (3 \, \text{rows}) (3,726 \, \text{lbs/row}) = 11,178 \, \text{lbs} \]

Total row tear-out capacity > 11,000 lbs, thus row tear-out capacity is adequate.

Check group tear-out capacity per NDS Appendix E.4

\[Z'_{GT} = \frac{Z'_{RT}}{2} + \frac{Z'_{RT}}{2} + F'_{v'} A_{\text{group-net}} \]

\[Z'_{GT} = (3,726 \, \text{lbs} / 2) + (3,726 \, \text{lbs} / 2) + [1,380 \times 1.5 \, \text{in.} \times [5.0 \, \text{in.} - 2(5/8 \, \text{in.} + 1/16 \, \text{in.})]] \]

\[Z'_{GT} = 3,726 + 7,504 = 11,230 \, \text{lbs} \]

Group tear-out capacity > 11,000 lbs, thus group tear-out capacity is adequate.

Discussion of Example

Using NDS bolt tables alone with applicable adjustments produced an allowable connection capacity of 17,280 pounds. With additional required checks indicated in NDS 11.6.3 for “local stresses in connections,” capacity is limited to 11,178 pounds. For this example, using the capacity based on bolt tables alone for an actual design requiring 17,280 pounds capacity would produce a non-conservative error of 35%. Tension net section, row tear-out, and group tear-out capacities can be increased by changing placement of bolts in the connection. The example demonstrates the need for checking additional connection failure modes addressed by NDS Appendix E.

If an allowable design capacity is less than the required load, the detail must be adjusted to increase the connection capacity. For example, if row tear-out limits a connection capacity, increased spacing between bolts in a row and end distance will increase row tear-out capacity. Of course, this will also affect the group action factor, \(C_g \), from NDS Section 10.3.6, hence all affected calculations need to be repeated. Similarly, if group tear-out limits connection capacity, increased spacing between bolt rows (without violating edge distance requirements of NDS 11.5.1) will increase the net tension portion of group tear-out.

Summary and Conclusions

Design of single-bolt wood connections is relatively straightforward using provisions of NDS Chapters 10 and 11. Design of multiple-bolt wood connections is also covered by the NDS, but requires additional consideration to aspects such as bolt spacing in a row, spacing between bolt rows, group action factor, localized stresses in members, etc. This article is intended to alert design professionals to two multiple-bolt connection design issues that deserve special attention and explanation: local member stresses and structural glued-laminated timber horizontal shear values for connection design.

The NDS requires that the design professional check for “local stresses” in connections with multiple fasteners using “principles of engineering mechanics,” but does not stipulate the engineering method to be used. Appendix E of the NDS is listed as one method for checking local stresses for three potential failure modes – net section tension capacity, row tear-out capacity, and group tear-out capacity. Since the NDS is the referenced design standard for wood construction, it is a code requirement to check local stresses in multiple-bolt connections.

When designing multiple-bolt connections, NDS (Section 11.5) end and edge distances and spacing requirements are prescriptive and provide a starting point for a bolt connection design. Analyses using NDS bolt tables (NDS Chapter 11) with applicable adjustments (NDS Chapter 10) and Appendix E checks for localized stresses enable a design professional to determine the allowable design load for a trial connection detail using the minimum load calculated. The splice joint connection example demonstrates how localized member stresses can control a multiple-bolt connection design.

The allowable horizontal shear design value, with all appropriate adjustments, is used for row tear-out and group tear-out checks described in NDS Appendix E. However, for glulam, an important additional adjustment is required for the allowable shear value used in connection design for glulam made from softwood lumber. The design professional is alerted to Footnote 4 of Table 5A and Footnote 3 of Tables 5A Expanded and 5B that apply to glulam connection design. It stipulates that the reference shear design value shall be decreased by multiplying by a factor of 0.72 for connection design (and for designing non-prismatic members, notched members, and members subject to impact or cyclic loads).

Donald A. Bender, P.E., Ph.D., is Director of the Composite Materials & Engineering Center at Washington State University and Weyerhaeuser Professor of Civil Engineering. He can be reached at bender@wsu.edu.

Frank E. Woeste, P.E., Ph.D., is Professor Emeritus at Virginia Tech University and a wood engineering consultant. He can be reached at fwoeste@vt.edu.
References

