Review Category : Structural Design

In recent years, it has become more desirable, and in many cases necessary, for architects and engineers to design buildings and structural frames with beams and girders of limited depth. Shallower structural depth allows building floor-to-floor height to be lowered and the amount of materials used – such as exterior cladding, interior walls, partitions, and stairs – to be reduced. In high-rise building construction, it allows extra floors to be added within the proposed building height. On expansion projects, a shallower structural depth helps facilitate the need to match the existing floor elevations.

Read More →

Probably the most widely used value in a soil report is soil bearing capacity. The obvious reason is that basic examples given in most text books almost always use bearing capacity to calculate the plan dimension of a footing. Because of simplicity and ease of use, this method is still the fundamental soil parameter for foundation design. However, that simplicity assumes the footing will behave as a rigid body. That particular assumption works well in practice for small and single column footings. But for large and multi column foundations, most engineers prefer flexible analysis.

Read More →

There is an important design consideration for wood floor framing that is not likely to be found in building codes or design standards – differential deflection. This issue is often overlooked, but can lead to significant performance problems. Differential deflection, as described here, is the change in elevation from one framing member to the adjacent member. Differential deflection may escape consideration. Building code requirements and design standards for deflection typically pertain only to the deflection along the span length of an individual member. Problems related to differential deflection can arise when one long span member deflects in flexure, within building code limits, while the adjacent member does not, often due to different support conditions or stiffness (Figure 1).

Read More →

Anchored masonry veneer wall systems are commonly used throughout North America in residential, commercial and institutional construction. These exterior masonry veneers are non load-bearing and are usually assumed to be little more than an exterior finish of the building envelope. Using prescriptive design methods, masonry veneer can be supported vertically by foundations for heights less than 30 feet, or supported by the building frame for taller structures.

Read More →

Most typical nonstructural partitions are specified and constructed in accordance with the industry or manufacturers’ design tables and would not require additional, formal engineering input on a project-by-project basis. The manufacturers’ design tables are based on engineering principles and tests. However, there are projects where the requirements are outside the limits of the manufacturers’ design tables.

Read More →

Considerations to Prevent Premature Concentric Punching Shear Failure in Reinforced Concrete (RC) Two-way Slabs

Two-way slabs are unique to Reinforced Concrete (RC) construction. The most common type, due to its ease of forming and speed of construction, is the flat plate, a slab of uniform thickness supported by columns without beams, drop panels or capitals. Flat plates are common in building construction, and can also be found as deck components in waterfront piers and wharves.

Read More →
STRUCTURE magazine